Windocks
Windocks provides on-demand Oracle, SQL Server, as well as other databases that can be customized for Dev, Test, Reporting, ML, DevOps, and DevOps. Windocks database orchestration allows for code-free end to end automated delivery. This includes masking, synthetic data, Git operations and access controls, as well as secrets management. Databases can be delivered to conventional instances, Kubernetes or Docker containers.
Windocks can be installed on standard Linux or Windows servers in minutes. It can also run on any public cloud infrastructure or on-premise infrastructure. One VM can host up 50 concurrent database environments. When combined with Docker containers, enterprises often see a 5:1 reduction of lower-level database VMs.
Learn more
Vertex AI
Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case.
Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
Learn more
OneView
Utilizing only real data presents notable obstacles in the training of machine learning models. In contrast, synthetic data offers boundless opportunities for training, effectively mitigating the limitations associated with real datasets. Enhance the efficacy of your geospatial analytics by generating the specific imagery you require. With customizable options for satellite, drone, and aerial images, you can swiftly and iteratively create various scenarios, modify object ratios, and fine-tune imaging parameters. This flexibility allows for the generation of any infrequent objects or events. The resulting datasets are meticulously annotated, devoid of errors, and primed for effective training. The OneView simulation engine constructs 3D environments that serve as the foundation for synthetic aerial and satellite imagery, incorporating numerous randomization elements, filters, and variable parameters. These synthetic visuals can effectively substitute real data in the training of machine learning models for remote sensing applications, leading to enhanced interpretation outcomes, particularly in situations where data coverage is sparse or quality is subpar. With the ability to customize and iterate quickly, users can tailor their datasets to meet specific project needs, further optimizing the training process.
Learn more
DataCebo Synthetic Data Vault (SDV)
The Synthetic Data Vault (SDV) is a comprehensive Python library crafted for generating synthetic tabular data with ease. It employs various machine learning techniques to capture and replicate the underlying patterns present in actual datasets, resulting in synthetic data that mirrors real-world scenarios. The SDV provides an array of models, including traditional statistical approaches like GaussianCopula and advanced deep learning techniques such as CTGAN. You can produce data for individual tables, interconnected tables, or even sequential datasets. Furthermore, it allows users to assess the synthetic data against real data using various metrics, facilitating a thorough comparison. The library includes diagnostic tools that generate quality reports to enhance understanding and identify potential issues. Users also have the flexibility to fine-tune data processing for better synthetic data quality, select from various anonymization techniques, and establish business rules through logical constraints. Synthetic data can be utilized as a substitute for real data to increase security, or as a complementary resource to augment existing datasets. Overall, the SDV serves as a holistic ecosystem for synthetic data models, evaluations, and metrics, making it an invaluable resource for data-driven projects. Additionally, its versatility ensures it meets a wide range of user needs in data generation and analysis.
Learn more