Best Dataiku Alternatives in 2025
Find the top alternatives to Dataiku currently available. Compare ratings, reviews, pricing, and features of Dataiku alternatives in 2025. Slashdot lists the best Dataiku alternatives on the market that offer competing products that are similar to Dataiku. Sort through Dataiku alternatives below to make the best choice for your needs
-
1
Vertex AI
Google
673 RatingsFully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex. -
2
BigQuery is a serverless, multicloud data warehouse that makes working with all types of data effortless, allowing you to focus on extracting valuable business insights quickly. As a central component of Google’s data cloud, it streamlines data integration, enables cost-effective and secure scaling of analytics, and offers built-in business intelligence for sharing detailed data insights. With a simple SQL interface, it also supports training and deploying machine learning models, helping to foster data-driven decision-making across your organization. Its robust performance ensures that businesses can handle increasing data volumes with minimal effort, scaling to meet the needs of growing enterprises. Gemini within BigQuery brings AI-powered tools that enhance collaboration and productivity, such as code recommendations, visual data preparation, and intelligent suggestions aimed at improving efficiency and lowering costs. The platform offers an all-in-one environment with SQL, a notebook, and a natural language-based canvas interface, catering to data professionals of all skill levels. This cohesive workspace simplifies the entire analytics journey, enabling teams to work faster and more efficiently.
-
3
RunPod
RunPod
116 RatingsRunPod provides a cloud infrastructure that enables seamless deployment and scaling of AI workloads with GPU-powered pods. By offering access to a wide array of NVIDIA GPUs, such as the A100 and H100, RunPod supports training and deploying machine learning models with minimal latency and high performance. The platform emphasizes ease of use, allowing users to spin up pods in seconds and scale them dynamically to meet demand. With features like autoscaling, real-time analytics, and serverless scaling, RunPod is an ideal solution for startups, academic institutions, and enterprises seeking a flexible, powerful, and affordable platform for AI development and inference. -
4
Cognos Analytics with Watson brings BI to a new level with AI capabilities that provide a complete, trustworthy, and complete picture of your company. They can forecast the future, predict outcomes, and explain why they might happen. Built-in AI can be used to speed up and improve the blending of data or find the best tables for your model. AI can help you uncover hidden trends and drivers and provide insights in real-time. You can create powerful visualizations and tell the story of your data. You can also share insights via email or Slack. Combine advanced analytics with data science to unlock new opportunities. Self-service analytics that is governed and secures data from misuse adapts to your needs. You can deploy it wherever you need it - on premises, on the cloud, on IBM Cloud Pak®, for Data or as a hybrid option.
-
5
IBM® SPSS® Statistics software is used by a variety of customers to solve industry-specific business issues to drive quality decision-making. The IBM® SPSS® software platform offers advanced statistical analysis, a vast library of machine learning algorithms, text analysis, open-source extensibility, integration with big data and seamless deployment into applications. Its ease of use, flexibility and scalability make SPSS accessible to users of all skill levels. What’s more, it’s suitable for projects of all sizes and levels of complexity, and can help you find new opportunities, improve efficiency and minimize risk.
-
6
TiMi
TIMi
TIMi allows companies to use their corporate data to generate new ideas and make crucial business decisions more quickly and easily than ever before. The heart of TIMi’s Integrated Platform. TIMi's ultimate real time AUTO-ML engine. 3D VR segmentation, visualization. Unlimited self service business Intelligence. TIMi is a faster solution than any other to perform the 2 most critical analytical tasks: data cleaning, feature engineering, creation KPIs, and predictive modeling. TIMi is an ethical solution. There is no lock-in, just excellence. We guarantee you work in complete serenity, without unexpected costs. TIMi's unique software infrastructure allows for maximum flexibility during the exploration phase, and high reliability during the production phase. TIMi allows your analysts to test even the most crazy ideas. -
7
Explorium
Explorium
$50K/year Explorium is a data science platform that combines automatic data discovery with feature engineering. Explorium empowers data scientists and business executives to make better decisions by automatically connecting to thousands external data sources (premium and partner) and using machine learning to extract the most relevant signals. Try it for free at www.explorium.ai/free-trial -
8
TensorFlow
TensorFlow
Free 2 RatingsTensorFlow is a comprehensive open-source machine learning platform that covers the entire process from development to deployment. This platform boasts a rich and adaptable ecosystem featuring various tools, libraries, and community resources, empowering researchers to advance the field of machine learning while allowing developers to create and implement ML-powered applications with ease. With intuitive high-level APIs like Keras and support for eager execution, users can effortlessly build and refine ML models, facilitating quick iterations and simplifying debugging. The flexibility of TensorFlow allows for seamless training and deployment of models across various environments, whether in the cloud, on-premises, within browsers, or directly on devices, regardless of the programming language utilized. Its straightforward and versatile architecture supports the transformation of innovative ideas into practical code, enabling the development of cutting-edge models that can be published swiftly. Overall, TensorFlow provides a powerful framework that encourages experimentation and accelerates the machine learning process. -
9
Amazon SageMaker
Amazon
Amazon SageMaker is a comprehensive machine learning platform that integrates powerful tools for model building, training, and deployment in one cohesive environment. It combines data processing, AI model development, and collaboration features, allowing teams to streamline the development of custom AI applications. With SageMaker, users can easily access data stored across Amazon S3 data lakes and Amazon Redshift data warehouses, facilitating faster insights and AI model development. It also supports generative AI use cases, enabling users to develop and scale applications with cutting-edge AI technologies. The platform’s governance and security features ensure that data and models are handled with precision and compliance throughout the entire ML lifecycle. Furthermore, SageMaker provides a unified development studio for real-time collaboration, speeding up data discovery and model deployment. -
10
DataRobot
DataRobot
AI Cloud represents an innovative strategy designed to meet the current demands, challenges, and potential of artificial intelligence. This comprehensive system acts as a single source of truth, expediting the process of bringing AI solutions into production for organizations of all sizes. Users benefit from a collaborative environment tailored for ongoing enhancements throughout the entire AI lifecycle. The AI Catalog simplifies the process of discovering, sharing, tagging, and reusing data, which accelerates deployment and fosters teamwork. This catalog ensures that users can easily access relevant data to resolve business issues while maintaining high standards of security, compliance, and consistency. If your database is subject to a network policy restricting access to specific IP addresses, please reach out to Support for assistance in obtaining a list of IPs that should be added to your network policy for whitelisting, ensuring that your operations run smoothly. Additionally, leveraging AI Cloud can significantly improve your organization’s ability to innovate and adapt in a rapidly evolving technological landscape. -
11
Alteryx
Alteryx
Embrace a groundbreaking age of analytics through the Alteryx AI Platform. Equip your organization with streamlined data preparation, analytics powered by artificial intelligence, and accessible machine learning, all while ensuring governance and security are built in. This marks the dawn of a new era for data-driven decision-making accessible to every user and team at all levels. Enhance your teams' capabilities with a straightforward, user-friendly interface that enables everyone to develop analytical solutions that boost productivity, efficiency, and profitability. Foster a robust analytics culture by utilizing a comprehensive cloud analytics platform that allows you to convert data into meaningful insights via self-service data preparation, machine learning, and AI-generated findings. Minimize risks and safeguard your data with cutting-edge security protocols and certifications. Additionally, seamlessly connect to your data and applications through open API standards, facilitating a more integrated and efficient analytical environment. By adopting these innovations, your organization can thrive in an increasingly data-centric world. -
12
Datameer
Datameer
Datameer is your go-to data tool for exploring, preparing, visualizing, and cataloging Snowflake insights. From exploring raw datasets to driving business decisions – an all-in-one tool. -
13
C3 AI Suite
C3.ai
1 RatingCreate, launch, and manage Enterprise AI solutions effortlessly. The C3 AI® Suite employs a distinctive model-driven architecture that not only speeds up delivery but also simplifies the complexities associated with crafting enterprise AI solutions. This innovative architectural approach features an "abstraction layer," enabling developers to construct enterprise AI applications by leveraging conceptual models of all necessary components, rather than engaging in extensive coding. This methodology yields remarkable advantages: Implement AI applications and models that enhance operations for each product, asset, customer, or transaction across various regions and sectors. Experience the deployment of AI applications and witness results within just 1-2 quarters, enabling a swift introduction of additional applications and functionalities. Furthermore, unlock ongoing value—potentially amounting to hundreds of millions to billions of dollars annually—through cost reductions, revenue increases, and improved profit margins. Additionally, C3.ai’s comprehensive platform ensures systematic governance of AI across the enterprise, providing robust data lineage and oversight capabilities. This unified approach not only fosters efficiency but also promotes a culture of responsible AI usage within organizations. -
14
KNIME Analytics Platform
KNIME
Two complementary tools, one enterprise-grade platform. Open source KNIME Analytics Platform to create data science. Commercial KNIME Server to produce data science. KNIME Analytics Platform is an open-source software that creates data science. KNIME is intuitive, open, and constantly integrating new developments. It makes data science and designing data science workflows as easy as possible. KNIME Server Enterprise Software is used to facilitate team-based collaboration, automation, and management of data science workflows, as well as the deployment and management of analytical applications and services. Non-experts have access to KNIME WebPortal and REST APIs. Extensions for KNIME Analytics Platform allow you to do more with your data. Some are created and maintained by KNIME, while others are contributed by the community or our trusted partners. Integrations are also available with many open-source projects. -
15
Domino Enterprise MLOps Platform
Domino Data Lab
1 RatingThe Domino Enterprise MLOps Platform helps data science teams improve the speed, quality, and impact of data science at scale. Domino is open and flexible, empowering professional data scientists to use their preferred tools and infrastructure. Data science models get into production fast and are kept operating at peak performance with integrated workflows. Domino also delivers the security, governance and compliance that enterprises expect. The Self-Service Infrastructure Portal makes data science teams become more productive with easy access to their preferred tools, scalable compute, and diverse data sets. By automating time-consuming and tedious DevOps tasks, data scientists can focus on the tasks at hand. The Integrated Model Factory includes a workbench, model and app deployment, and integrated monitoring to rapidly experiment, deploy the best models in production, ensure optimal performance, and collaborate across the end-to-end data science lifecycle. The System of Record has a powerful reproducibility engine, search and knowledge management, and integrated project management. Teams can easily find, reuse, reproduce, and build on any data science work to amplify innovation. -
16
Neural Designer is a data-science and machine learning platform that allows you to build, train, deploy, and maintain neural network models. This tool was created to allow innovative companies and research centres to focus on their applications, not on programming algorithms or programming techniques. Neural Designer does not require you to code or create block diagrams. Instead, the interface guides users through a series of clearly defined steps. Machine Learning can be applied in different industries. These are some examples of machine learning solutions: - In engineering: Performance optimization, quality improvement and fault detection - In banking, insurance: churn prevention and customer targeting. - In healthcare: medical diagnosis, prognosis and activity recognition, microarray analysis and drug design. Neural Designer's strength is its ability to intuitively build predictive models and perform complex operations.
-
17
H2O.ai
H2O.ai
H2O.ai stands at the forefront of open source AI and machine learning, dedicated to making artificial intelligence accessible to all. Our cutting-edge platforms, which are designed for enterprise readiness, support hundreds of thousands of data scientists across more than 20,000 organizations worldwide. By enabling companies in sectors such as finance, insurance, healthcare, telecommunications, retail, pharmaceuticals, and marketing, we are helping to foster a new wave of businesses that harness the power of AI to drive tangible value and innovation in today's marketplace. With our commitment to democratizing technology, we aim to transform how industries operate and thrive. -
18
Paxata
Paxata
Paxata is an innovative, user-friendly platform that allows business analysts to quickly ingest, analyze, and transform various raw datasets into useful information independently, significantly speeding up the process of generating actionable business insights. Besides supporting business analysts and subject matter experts, Paxata offers an extensive suite of automation tools and data preparation features that can be integrated into other applications to streamline data preparation as a service. The Paxata Adaptive Information Platform (AIP) brings together data integration, quality assurance, semantic enhancement, collaboration, and robust data governance, all while maintaining transparent data lineage through self-documentation. Utilizing a highly flexible multi-tenant cloud architecture, Paxata AIP stands out as the only contemporary information platform that operates as a multi-cloud hybrid information fabric, ensuring versatility and scalability in data handling. This unique approach not only enhances efficiency but also fosters collaboration across different teams within an organization. -
19
Neuton AutoML
Neuton.AI
$0Neuton.AI, an automated solution, empowering users to build accurate predictive models and make smart predictions with: Zero code solution Zero need for technical skills Zero need for data science knowledge -
20
Modeller
Paragon Business Solutions
Model building software for today's machine learning age incorporates credit risk modelling expertise spanning over thirty years. Modeller is a flexible, transparent, interactive, and feature-rich tool that helps organizations get more out of their analytical teams. It allows for a variety of techniques, rapid development of powerful models, full explanation, and advancement of less experienced members of the team. You can choose from a variety of modeling techniques, including machine-learning, to achieve optimal predictive accuracy, especially when working with complex interrelationships and multicollinearity. At the touch of a button, you can create industry-standard binary and continuous target models. You can use decision tree modeling with CHAID trees and CART. You can choose from logistic regression, elastic network models, survival analysis (Cox PH), random forest, XGBoost and stochastic gradient descend. SAS, SQL and PMML are all available export options for use in other scoring and decisioning programs. -
21
Rulex
Rulex
€95/month Rulex Platform is a data management and decision intelligence system where you can build, run, and maintain enterprise-level solutions based on business data. By orchestrating data smartly and leveraging decision intelligence – including mathematical optimization, eXplainable AI, rule engines, machine learning, and more – Rulex Platform can address any business challenge and corner case, improving process efficiency and decision-making. Rulex solutions can be easily integrated with any third-party system and architecture through APIs, smoothly deployed into any environment via DevOps tools, and scheduled to run through flexible flow automation. -
22
TrueFoundry
TrueFoundry
$5 per monthTrueFoundry is a cloud-native platform-as-a-service for machine learning training and deployment built on Kubernetes, designed to empower machine learning teams to train and launch models with the efficiency and reliability typically associated with major tech companies, all while ensuring scalability to reduce costs and speed up production release. By abstracting the complexities of Kubernetes, it allows data scientists to work in a familiar environment without the overhead of managing infrastructure. Additionally, it facilitates the seamless deployment and fine-tuning of large language models, prioritizing security and cost-effectiveness throughout the process. TrueFoundry features an open-ended, API-driven architecture that integrates smoothly with internal systems, enables deployment on a company's existing infrastructure, and upholds stringent data privacy and DevSecOps standards, ensuring that teams can innovate without compromising on security. This comprehensive approach not only streamlines workflows but also fosters collaboration among teams, ultimately driving faster and more efficient model deployment. -
23
Trifacta
Trifacta
Trifacta offers an efficient solution for preparing data and constructing data pipelines in the cloud. By leveraging visual and intelligent assistance, it enables users to expedite data preparation, leading to quicker insights. Data analytics projects can falter due to poor data quality; therefore, Trifacta equips you with the tools to comprehend and refine your data swiftly and accurately. It empowers users to harness the full potential of their data without the need for coding expertise. Traditional manual data preparation methods can be tedious and lack scalability, but with Trifacta, you can create, implement, and maintain self-service data pipelines in mere minutes instead of months, revolutionizing your data workflow. This ensures that your analytics projects are not only successful but also sustainable over time. -
24
Databricks Data Intelligence Platform
Databricks
The Databricks Data Intelligence Platform empowers every member of your organization to leverage data and artificial intelligence effectively. Constructed on a lakehouse architecture, it establishes a cohesive and transparent foundation for all aspects of data management and governance, enhanced by a Data Intelligence Engine that recognizes the distinct characteristics of your data. Companies that excel across various sectors will be those that harness the power of data and AI. Covering everything from ETL processes to data warehousing and generative AI, Databricks facilitates the streamlining and acceleration of your data and AI objectives. By merging generative AI with the integrative advantages of a lakehouse, Databricks fuels a Data Intelligence Engine that comprehends the specific semantics of your data. This functionality enables the platform to optimize performance automatically and manage infrastructure in a manner tailored to your organization's needs. Additionally, the Data Intelligence Engine is designed to grasp the unique language of your enterprise, making the search and exploration of new data as straightforward as posing a question to a colleague, thus fostering collaboration and efficiency. Ultimately, this innovative approach transforms the way organizations interact with their data, driving better decision-making and insights. -
25
Create, execute, and oversee AI models while enhancing decision-making at scale across any cloud infrastructure. IBM Watson Studio enables you to implement AI seamlessly anywhere as part of the IBM Cloud Pak® for Data, which is the comprehensive data and AI platform from IBM. Collaborate across teams, streamline the management of the AI lifecycle, and hasten the realization of value with a versatile multicloud framework. You can automate the AI lifecycles using ModelOps pipelines and expedite data science development through AutoAI. Whether preparing or constructing models, you have the option to do so visually or programmatically. Deploying and operating models is made simple with one-click integration. Additionally, promote responsible AI governance by ensuring your models are fair and explainable to strengthen business strategies. Leverage open-source frameworks such as PyTorch, TensorFlow, and scikit-learn to enhance your projects. Consolidate development tools, including leading IDEs, Jupyter notebooks, JupyterLab, and command-line interfaces, along with programming languages like Python, R, and Scala. Through the automation of AI lifecycle management, IBM Watson Studio empowers you to build and scale AI solutions with an emphasis on trust and transparency, ultimately leading to improved organizational performance and innovation.
-
26
JFrog ML
JFrog
JFrog ML (formerly Qwak) is a comprehensive MLOps platform that provides end-to-end management for building, training, and deploying AI models. The platform supports large-scale AI applications, including LLMs, and offers capabilities like automatic model retraining, real-time performance monitoring, and scalable deployment options. It also provides a centralized feature store for managing the entire feature lifecycle, as well as tools for ingesting, processing, and transforming data from multiple sources. JFrog ML is built to enable fast experimentation, collaboration, and deployment across various AI and ML use cases, making it an ideal platform for organizations looking to streamline their AI workflows. -
27
MLflow
MLflow
MLflow is an open-source suite designed to oversee the machine learning lifecycle, encompassing aspects such as experimentation, reproducibility, deployment, and a centralized model registry. The platform features four main components that facilitate various tasks: tracking and querying experiments encompassing code, data, configurations, and outcomes; packaging data science code to ensure reproducibility across multiple platforms; deploying machine learning models across various serving environments; and storing, annotating, discovering, and managing models in a unified repository. Among these, the MLflow Tracking component provides both an API and a user interface for logging essential aspects like parameters, code versions, metrics, and output files generated during the execution of machine learning tasks, enabling later visualization of results. It allows for logging and querying experiments through several interfaces, including Python, REST, R API, and Java API. Furthermore, an MLflow Project is a structured format for organizing data science code, ensuring it can be reused and reproduced easily, with a focus on established conventions. Additionally, the Projects component comes equipped with an API and command-line tools specifically designed for executing these projects effectively. Overall, MLflow streamlines the management of machine learning workflows, making it easier for teams to collaborate and iterate on their models. -
28
RapidMiner
Altair
FreeRapidMiner is redefining enterprise AI so anyone can positively shape the future. RapidMiner empowers data-loving people from all levels to quickly create and implement AI solutions that drive immediate business impact. Our platform unites data prep, machine-learning, and model operations. This provides a user experience that is both rich in data science and simplified for all others. Customers are guaranteed success with our Center of Excellence methodology, RapidMiner Academy and no matter what level of experience or resources they have. -
29
Azure Machine Learning
Microsoft
Streamline the entire machine learning lifecycle from start to finish. Equip developers and data scientists with an extensive array of efficient tools for swiftly building, training, and deploying machine learning models. Enhance the speed of market readiness and promote collaboration among teams through leading-edge MLOps—akin to DevOps but tailored for machine learning. Drive innovation within a secure, reliable platform that prioritizes responsible AI practices. Cater to users of all expertise levels with options for both code-centric and drag-and-drop interfaces, along with automated machine learning features. Implement comprehensive MLOps functionalities that seamlessly align with existing DevOps workflows, facilitating the management of the entire machine learning lifecycle. Emphasize responsible AI by providing insights into model interpretability and fairness, securing data through differential privacy and confidential computing, and maintaining control over the machine learning lifecycle with audit trails and datasheets. Additionally, ensure exceptional compatibility with top open-source frameworks and programming languages such as MLflow, Kubeflow, ONNX, PyTorch, TensorFlow, Python, and R, thus broadening accessibility and usability for diverse projects. By fostering an environment that promotes collaboration and innovation, teams can achieve remarkable advancements in their machine learning endeavors. -
30
Oracle Analytics Cloud
Oracle
$16 User Per Month - Oracle AnOracle Analytics is a comprehensive platform designed for all analytics user roles, integrating AI and machine learning across the board to boost productivity and enable smarter business decisions. Whether you opt for Oracle Analytics Cloud, our cloud-native service, or Oracle Analytics Server, our on-premises solution, you can ensure robust security and governance without compromise. -
31
Alteryx Designer
Alteryx
Analysts can leverage drag-and-drop tools alongside generative AI to prepare and blend data up to 100 times faster compared to traditional methods. A self-service data analytics platform empowers every analyst by eliminating costly bottlenecks in the analytics process. Alteryx Designer stands out as a self-service data analytics solution that equips analysts to effectively prepare, blend, and analyze data through user-friendly, drag-and-drop interfaces. The platform boasts compatibility with over 300 automation tools and integrates seamlessly with more than 80 data sources. By prioritizing low-code and no-code features, Alteryx Designer allows users to construct analytic workflows effortlessly, expedite analytical tasks using generative AI, and derive insights without requiring extensive programming knowledge. Additionally, it facilitates the export of results to more than 70 different tools, showcasing its exceptional versatility. Overall, this design enhances operational efficiency, enabling organizations to accelerate their data preparation and analytical processes significantly. -
32
BDB Platform
Big Data BizViz
BDB is an advanced platform for data analytics and business intelligence that excels in extracting valuable insights from your data. It can be implemented both in cloud environments and on-premises. With a unique microservices architecture, it incorporates components for Data Preparation, Predictive Analytics, Pipelines, and Dashboard design, enabling tailored solutions and scalable analytics across various sectors. Thanks to its robust NLP-driven search functionality, users can harness the potential of data seamlessly across desktops, tablets, and mobile devices. BDB offers numerous integrated data connectors, allowing it to interface with a wide array of popular data sources, applications, third-party APIs, IoT devices, and social media platforms in real-time. It facilitates connections to relational databases, big data systems, FTP/SFTP servers, flat files, and web services, effectively managing structured, semi-structured, and unstructured data. Embark on your path to cutting-edge analytics today, and discover the transformative power of BDB for your organization. -
33
IBM Cloud Pak for Data
IBM
$699 per monthThe primary obstacle in expanding AI-driven decision-making lies in the underutilization of data. IBM Cloud Pak® for Data provides a cohesive platform that integrates a data fabric, enabling seamless connection and access to isolated data, whether it resides on-premises or in various cloud environments, without necessitating data relocation. It streamlines data accessibility by automatically identifying and organizing data to present actionable knowledge assets to users, while simultaneously implementing automated policy enforcement to ensure secure usage. To further enhance the speed of insights, this platform incorporates a modern cloud data warehouse that works in harmony with existing systems. It universally enforces data privacy and usage policies across all datasets, ensuring compliance is maintained. By leveraging a high-performance cloud data warehouse, organizations can obtain insights more rapidly. Additionally, the platform empowers data scientists, developers, and analysts with a comprehensive interface to construct, deploy, and manage reliable AI models across any cloud infrastructure. Moreover, enhance your analytics capabilities with Netezza, a robust data warehouse designed for high performance and efficiency. This comprehensive approach not only accelerates decision-making but also fosters innovation across various sectors. -
34
MyDataModels TADA
MyDataModels
$5347.46 per yearTADA by MyDataModels offers a top-tier predictive analytics solution that enables professionals to leverage their Small Data for business improvement through a user-friendly and easily deployable tool. With TADA, users can quickly develop predictive models that deliver actionable insights in a fraction of the time, transforming what once took days into mere hours thanks to an automated data preparation process that reduces time by 40%. This platform empowers individuals to extract valuable outcomes from their data without the need for programming expertise or advanced machine learning knowledge. By utilizing intuitive and transparent models composed of straightforward formulas, users can efficiently optimize their time and turn raw data into meaningful insights effortlessly across various platforms. The complexity of predictive model construction is significantly diminished as TADA automates the generative machine learning process, making it as simple as inputting data to receive a model output. Moreover, TADA allows for the creation and execution of machine learning models on a wide range of devices and platforms, ensuring accessibility through its robust web-based pre-processing capabilities, thereby enhancing operational efficiency and decision-making. -
35
PurpleCube
PurpleCube
Experience an enterprise-level architecture and a cloud data platform powered by Snowflake® that enables secure storage and utilization of your data in the cloud. With integrated ETL and an intuitive drag-and-drop visual workflow designer, you can easily connect, clean, and transform data from over 250 sources. Harness cutting-edge Search and AI technology to quickly generate insights and actionable analytics from your data within seconds. Utilize our advanced AI/ML environments to create, refine, and deploy your predictive analytics and forecasting models. Take your data capabilities further with our comprehensive AI/ML frameworks, allowing you to design, train, and implement AI models through the PurpleCube Data Science module. Additionally, construct engaging BI visualizations with PurpleCube Analytics, explore your data using natural language searches, and benefit from AI-driven insights and intelligent recommendations that reveal answers to questions you may not have considered. This holistic approach ensures that you are equipped to make data-driven decisions with confidence and clarity. -
36
Metaflow
Metaflow
Data science projects achieve success when data scientists possess the ability to independently create, enhance, and manage comprehensive workflows while prioritizing their data science tasks over engineering concerns. By utilizing Metaflow alongside popular data science libraries like TensorFlow or SciKit Learn, you can write your models in straightforward Python syntax without needing to learn much that is new. Additionally, Metaflow supports the R programming language, broadening its usability. This tool aids in designing workflows, scaling them effectively, and deploying them into production environments. It automatically versions and tracks all experiments and data, facilitating easy inspection of results within notebooks. With tutorials included, newcomers can quickly familiarize themselves with the platform. You even have the option to duplicate all tutorials right into your current directory using the Metaflow command line interface, making it a seamless process to get started and explore further. As a result, Metaflow not only simplifies complex tasks but also empowers data scientists to focus on impactful analyses. -
37
Deepnote
Deepnote
FreeDeepnote is building the best data science notebook for teams. Connect your data, explore and analyze it within the notebook with real-time collaboration and versioning. Share links to your projects with other analysts and data scientists on your team, or present your polished, published notebooks to end users and stakeholders. All of this is done through a powerful, browser-based UI that runs in the cloud. -
38
PI.EXCHANGE
PI.EXCHANGE
$39 per monthEffortlessly link your data to the engine by either uploading a file or establishing a connection to a database. Once connected, you can begin to explore your data through various visualizations, or you can prepare it for machine learning modeling using data wrangling techniques and reusable recipes. Maximize the potential of your data by constructing machine learning models with regression, classification, or clustering algorithms—all without requiring any coding skills. Discover valuable insights into your dataset through tools that highlight feature importance, explain predictions, and allow for scenario analysis. Additionally, you can make forecasts and easily integrate them into your current systems using our pre-configured connectors, enabling you to take immediate action based on your findings. This streamlined process empowers you to unlock the full value of your data and drive informed decision-making. -
39
Amazon SageMaker Unified Studio provides a seamless and integrated environment for data teams to manage AI and machine learning projects from start to finish. It combines the power of AWS’s analytics tools—like Amazon Athena, Redshift, and Glue—with machine learning workflows, enabling users to build, train, and deploy models more effectively. The platform supports collaborative project work, secure data sharing, and access to Amazon’s AI services for generative AI app development. With built-in tools for model training, inference, and evaluation, SageMaker Unified Studio accelerates the AI development lifecycle.
-
40
Datatron
Datatron
Datatron provides tools and features that are built from scratch to help you make machine learning in production a reality. Many teams realize that there is more to deploying models than just the manual task. Datatron provides a single platform that manages all your ML, AI and Data Science models in production. We can help you automate, optimize and accelerate your ML model production to ensure they run smoothly and efficiently. Data Scientists can use a variety frameworks to create the best models. We support any framework you use to build a model (e.g. TensorFlow and H2O, Scikit-Learn and SAS are supported. Explore models that were created and uploaded by your data scientists, all from one central repository. In just a few clicks, you can create scalable model deployments. You can deploy models using any language or framework. Your model performance will help you make better decisions. -
41
Mona
Mona
Mona is a flexible and intelligent monitoring platform for AI / ML. Data science teams leverage Mona’s powerful analytical engine to gain granular insights about the behavior of their data and models, and detect issues within specific segments of data, in order to reduce business risk and pinpoint areas that need improvements. Mona enables tracking custom metrics for any AI use case within any industry and easily integrates with existing tech stacks. In 2018, we ventured on a mission to empower data teams to make AI more impactful and reliable, and to raise the collective confidence of business and technology leaders in their ability to make the most out of AI. We have built the leading intelligent monitoring platform to provide data and AI teams with continuous insights to help them reduce risks, optimize their operations, and ultimately build more valuable AI systems. Enterprises in a variety of industries leverage Mona for NLP/NLU, speech, computer vision, and machine learning use cases. Mona was founded by experienced product leaders from Google and McKinsey&Co, is backed by top VCs, and is HQ in Atlanta, Georgia. In 2021, Mona was recognized by Gartner as a Cool Vendor in AI Operationalization and Engineering. -
42
Huawei Cloud ModelArts
Huawei Cloud
ModelArts, an all-encompassing AI development platform from Huawei Cloud, is crafted to optimize the complete AI workflow for both developers and data scientists. This platform encompasses a comprehensive toolchain that facilitates various phases of AI development, including data preprocessing, semi-automated data labeling, distributed training, automated model creation, and versatile deployment across cloud, edge, and on-premises systems. It is compatible with widely used open-source AI frameworks such as TensorFlow, PyTorch, and MindSpore, while also enabling the integration of customized algorithms to meet unique project requirements. The platform's end-to-end development pipeline fosters enhanced collaboration among DataOps, MLOps, and DevOps teams, resulting in improved development efficiency by as much as 50%. Furthermore, ModelArts offers budget-friendly AI computing resources with a range of specifications, supporting extensive distributed training and accelerating inference processes. This flexibility empowers organizations to adapt their AI solutions to meet evolving business challenges effectively. -
43
Kubeflow
Kubeflow
The Kubeflow initiative aims to simplify the process of deploying machine learning workflows on Kubernetes, ensuring they are both portable and scalable. Rather than duplicating existing services, our focus is on offering an easy-to-use platform for implementing top-tier open-source ML systems across various infrastructures. Kubeflow is designed to operate seamlessly wherever Kubernetes is running. It features a specialized TensorFlow training job operator that facilitates the training of machine learning models, particularly excelling in managing distributed TensorFlow training tasks. Users can fine-tune the training controller to utilize either CPUs or GPUs, adapting it to different cluster configurations. In addition, Kubeflow provides functionalities to create and oversee interactive Jupyter notebooks, allowing for tailored deployments and resource allocation specific to data science tasks. You can test and refine your workflows locally before transitioning them to a cloud environment whenever you are prepared. This flexibility empowers data scientists to iterate efficiently, ensuring that their models are robust and ready for production. -
44
NVIDIA Triton Inference Server
NVIDIA
FreeThe NVIDIA Triton™ inference server provides efficient and scalable AI solutions for production environments. This open-source software simplifies the process of AI inference, allowing teams to deploy trained models from various frameworks, such as TensorFlow, NVIDIA TensorRT®, PyTorch, ONNX, XGBoost, Python, and more, across any infrastructure that relies on GPUs or CPUs, whether in the cloud, data center, or at the edge. By enabling concurrent model execution on GPUs, Triton enhances throughput and resource utilization, while also supporting inferencing on both x86 and ARM architectures. It comes equipped with advanced features such as dynamic batching, model analysis, ensemble modeling, and audio streaming capabilities. Additionally, Triton is designed to integrate seamlessly with Kubernetes, facilitating orchestration and scaling, while providing Prometheus metrics for effective monitoring and supporting live updates to models. This software is compatible with all major public cloud machine learning platforms and managed Kubernetes services, making it an essential tool for standardizing model deployment in production settings. Ultimately, Triton empowers developers to achieve high-performance inference while simplifying the overall deployment process. -
45
Key Ward
Key Ward
€9,000 per yearEffortlessly manage, process, and transform CAD, FE, CFD, and test data with ease. Establish automatic data pipelines for machine learning, reduced order modeling, and 3D deep learning applications. Eliminate the complexity of data science without the need for coding. Key Ward's platform stands out as the pioneering end-to-end no-code engineering solution, fundamentally changing the way engineers work with their data, whether it be experimental or CAx. By harnessing the power of engineering data intelligence, our software empowers engineers to seamlessly navigate their multi-source data, extracting immediate value through integrated advanced analytics tools while also allowing for the custom development of machine learning and deep learning models, all within a single platform with just a few clicks. Centralize, update, extract, sort, clean, and prepare your diverse data sources for thorough analysis, machine learning, or deep learning applications automatically. Additionally, leverage our sophisticated analytics tools on your experimental and simulation data to uncover correlations, discover dependencies, and reveal underlying patterns that can drive innovation in engineering processes. Ultimately, this approach streamlines workflows, enhancing productivity and enabling more informed decision-making in engineering endeavors. -
46
Intel Tiber AI Studio
Intel
Intel® Tiber™ AI Studio serves as an all-encompassing machine learning operating system designed to streamline and unify the development of artificial intelligence. This robust platform accommodates a diverse array of AI workloads and features a hybrid multi-cloud infrastructure that enhances the speed of ML pipeline creation, model training, and deployment processes. By incorporating native Kubernetes orchestration and a meta-scheduler, Tiber™ AI Studio delivers unparalleled flexibility for managing both on-premises and cloud resources. Furthermore, its scalable MLOps framework empowers data scientists to seamlessly experiment, collaborate, and automate their machine learning workflows, all while promoting efficient and cost-effective resource utilization. This innovative approach not only boosts productivity but also fosters a collaborative environment for teams working on AI projects. -
47
HyperSense
Subex
The HyperSense platform is a cloud-native, SaaS-based augmented analytics solution designed to assist enterprises in making quicker and more informed decisions by utilizing Artificial Intelligence (AI) throughout the data value chain. It seamlessly integrates data from various sources, generates insights by developing, interpreting, and refining AI models, and disseminates these insights organization-wide. Acting as a comprehensive solution, HyperSense accelerates decision-making in telecom enterprises through its self-service AI capabilities. With its no-code interface, the platform is user-friendly and quick to set up, enabling business users, domain specialists, and data scientists to collaboratively create and manage AI models across the entire organization. This innovative approach not only enhances operational efficiency but also fosters a data-driven culture in the workplace. -
48
Google Colab
Google
8 RatingsGoogle Colab is a complimentary, cloud-based Jupyter Notebook platform that facilitates environments for machine learning, data analysis, and educational initiatives. It provides users with immediate access to powerful computational resources, including GPUs and TPUs, without the need for complex setup, making it particularly suitable for those engaged in data-heavy projects. Users can execute Python code in an interactive notebook format, collaborate seamlessly on various projects, and utilize a wide range of pre-built tools to enhance their experimentation and learning experience. Additionally, Colab has introduced a Data Science Agent that streamlines the analytical process by automating tasks from data comprehension to providing insights within a functional Colab notebook, although it is important to note that the agent may produce errors. This innovative feature further supports users in efficiently navigating the complexities of data science workflows. -
49
Dagster+
Dagster Labs
$0Dagster is the cloud-native open-source orchestrator for the whole development lifecycle, with integrated lineage and observability, a declarative programming model, and best-in-class testability. It is the platform of choice data teams responsible for the development, production, and observation of data assets. With Dagster, you can focus on running tasks, or you can identify the key assets you need to create using a declarative approach. Embrace CI/CD best practices from the get-go: build reusable components, spot data quality issues, and flag bugs early. -
50
ZinkML
ZinkML Technologies
ZinkML is an open-source data science platform that does not require any coding. It was designed to help organizations leverage data more effectively. Its visual and intuitive interface eliminates the need for extensive programming expertise, making data sciences accessible to a wider range of users. ZinkML streamlines data science from data ingestion, model building, deployment and monitoring. Users can drag and drop components to create complex pipelines, explore the data visually, or build predictive models, all without writing a line of code. The platform offers automated model selection, feature engineering and hyperparameter optimization, which accelerates the model development process. ZinkML also offers robust collaboration features that allow teams to work seamlessly together on data science projects. By democratizing the data science, we empower businesses to get maximum value out of their data and make better decisions.