Best DataLakeHouse.io Alternatives in 2025
Find the top alternatives to DataLakeHouse.io currently available. Compare ratings, reviews, pricing, and features of DataLakeHouse.io alternatives in 2025. Slashdot lists the best DataLakeHouse.io alternatives on the market that offer competing products that are similar to DataLakeHouse.io. Sort through DataLakeHouse.io alternatives below to make the best choice for your needs
-
1
ANSI SQL allows you to analyze petabytes worth of data at lightning-fast speeds with no operational overhead. Analytics at scale with 26%-34% less three-year TCO than cloud-based data warehouse alternatives. You can unleash your insights with a trusted platform that is more secure and scales with you. Multi-cloud analytics solutions that allow you to gain insights from all types of data. You can query streaming data in real-time and get the most current information about all your business processes. Machine learning is built-in and allows you to predict business outcomes quickly without having to move data. With just a few clicks, you can securely access and share the analytical insights within your organization. Easy creation of stunning dashboards and reports using popular business intelligence tools right out of the box. BigQuery's strong security, governance, and reliability controls ensure high availability and a 99.9% uptime SLA. Encrypt your data by default and with customer-managed encryption keys
-
2
AnalyticsCreator
AnalyticsCreator
46 RatingsAutomate data modeling and code generation with AnalyticsCreator. Transform ETL automation, data warehouse optimization, and analytics pipeline development by automating the creation of dimensional models, data marts, and data vault architectures. Seamlessly integrate with platforms like MS Fabric, PowerBI, and Snowflake. Key features include automated documentation, lineage tracking, schema evolution, and data quality testing frameworks. AnalyticsCreator reduces development time by 80% by automating repetitive tasks. It supports modern data engineering workflows, including CI/CD and agile methodologies. Key differentiators are metadata management automation, intelligent schema handling, version control integration, and automated testing frameworks that ensure robust data quality and governance. AnalyticsCreator enables rapid development and deployment of analytics solutions while maintaining high standards of quality and efficiency. Its comprehensive approach to data pipeline automation makes it an essential tool for organizations aiming to streamline their analytics processes and achieve faster, more reliable results. -
3
Qrvey
Qrvey
Qrvey is the only solution for embedded analytics with a built-in data lake. Qrvey saves engineering teams time and money with a turnkey solution connecting your data warehouse to your SaaS application. Qrvey’s full-stack solution includes the necessary components so that your engineering team can build less software in-house. Qrvey is built for SaaS companies that want to offer a better multi-tenant analytics experience. Qrvey's solution offers: - Built-in data lake powered by Elasticsearch - A unified data pipeline to ingest and analyze any type of data - The most embedded components - all JS, no iFrames - Fully personalizable to offer personalized experiences to users With Qrvey, you can build less software and deliver more value. -
4
Domo
Domo
49 RatingsDomo puts data to work for everyone so they can multiply their impact on the business. Underpinned by a secure data foundation, our cloud-native data experience platform makes data visible and actionable with user-friendly dashboards and apps. Domo helps companies optimize critical business processes at scale and in record time to spark bold curiosity that powers exponential business results. -
5
Archon Data Store
Platform 3 Solutions
Archon Data Store™ is an open-source archive lakehouse platform that allows you to store, manage and gain insights from large volumes of data. Its minimal footprint and compliance features enable large-scale processing and analysis of structured and unstructured data within your organization. Archon Data Store combines data warehouses, data lakes and other features into a single platform. This unified approach eliminates silos of data, streamlining workflows in data engineering, analytics and data science. Archon Data Store ensures data integrity through metadata centralization, optimized storage, and distributed computing. Its common approach to managing data, securing it, and governing it helps you innovate faster and operate more efficiently. Archon Data Store is a single platform that archives and analyzes all of your organization's data, while providing operational efficiencies. -
6
Fivetran
Fivetran
Fivetran is the smartest method to replicate data into your warehouse. Our zero-maintenance pipeline is the only one that allows for a quick setup. It takes months of development to create this system. Our connectors connect data from multiple databases and applications to one central location, allowing analysts to gain profound insights into their business. -
7
Dremio
Dremio
Dremio provides lightning-fast queries as well as a self-service semantic layer directly to your data lake storage. No data moving to proprietary data warehouses, and no cubes, aggregation tables, or extracts. Data architects have flexibility and control, while data consumers have self-service. Apache Arrow and Dremio technologies such as Data Reflections, Columnar Cloud Cache(C3), and Predictive Pipelining combine to make it easy to query your data lake storage. An abstraction layer allows IT to apply security and business meaning while allowing analysts and data scientists access data to explore it and create new virtual datasets. Dremio's semantic layers is an integrated searchable catalog that indexes all your metadata so business users can make sense of your data. The semantic layer is made up of virtual datasets and spaces, which are all searchable and indexed. -
8
Lyftrondata
Lyftrondata
Lyftrondata can help you build a governed lake, data warehouse or migrate from your old database to a modern cloud-based data warehouse. Lyftrondata makes it easy to create and manage all your data workloads from one platform. This includes automatically building your warehouse and pipeline. It's easy to share the data with ANSI SQL, BI/ML and analyze it instantly. You can increase the productivity of your data professionals while reducing your time to value. All data sets can be defined, categorized, and found in one place. These data sets can be shared with experts without coding and used to drive data-driven insights. This data sharing capability is ideal for companies who want to store their data once and share it with others. You can define a dataset, apply SQL transformations, or simply migrate your SQL data processing logic into any cloud data warehouse. -
9
Onehouse
Onehouse
The only fully-managed cloud data lakehouse that can ingest data from all of your sources in minutes, and support all of your query engines on a large scale. All for a fraction the cost. With the ease of fully managed pipelines, you can ingest data from databases and event streams in near-real-time. You can query your data using any engine and support all of your use cases, including BI, AI/ML, real-time analytics and AI/ML. Simple usage-based pricing allows you to cut your costs by up to 50% compared with cloud data warehouses and ETL software. With a fully-managed, highly optimized cloud service, you can deploy in minutes and without any engineering overhead. Unify all your data into a single source and eliminate the need for data to be copied between data lakes and warehouses. Apache Hudi, Apache Iceberg and Delta Lake all offer omnidirectional interoperability, allowing you to choose the best table format for your needs. Configure managed pipelines quickly for database CDC and stream ingestion. -
10
Sesame Software
Sesame Software
When you have the expertise of an enterprise partner combined with a scalable, easy-to-use data management suite, you can take back control of your data, access it from anywhere, ensure security and compliance, and unlock its power to grow your business. Why Use Sesame Software? Relational Junction builds, populates, and incrementally refreshes your data automatically. Enhance Data Quality - Convert data from multiple sources into a consistent format – leading to more accurate data, which provides the basis for solid decisions. Gain Insights - Automate the update of information into a central location, you can use your in-house BI tools to build useful reports to avoid costly mistakes. Fixed Price - Avoid high consumption costs with yearly fixed prices and multi-year discounts no matter your data volume. -
11
Openbridge
Openbridge
$149 per monthDiscover insights to boost sales growth with code-free, fully automated data pipelines to data lakes and cloud warehouses. Flexible, standards-based platform that unifies sales and marketing data to automate insights and smarter growth. Say goodbye to manual data downloads that are expensive and messy. You will always know exactly what you'll be charged and only pay what you actually use. Access to data-ready data is a great way to fuel your tools. We only work with official APIs as certified developers. Data pipelines from well-known sources are easy to use. These data pipelines are pre-built, pre-transformed and ready to go. Unlock data from Amazon Vendor Central and Amazon Seller Central, Instagram Stories. Teams can quickly and economically realize the value of their data with code-free data ingestion and transformation. Databricks, Amazon Redshift and other trusted data destinations like Databricks or Amazon Redshift ensure that data is always protected. -
12
BryteFlow
BryteFlow
BryteFlow creates the most efficient and automated environments for analytics. It transforms Amazon S3 into a powerful analytics platform by intelligently leveraging AWS ecosystem to deliver data at lightning speed. It works in conjunction with AWS Lake Formation and automates Modern Data Architecture, ensuring performance and productivity. -
13
Qlik Compose
Qlik
Qlik Compose for Data Warehouses offers a modern approach to data warehouse creation and operations by automating and optimising the process. Qlik Compose automates the design of the warehouse, generates ETL code and quickly applies updates, all while leveraging best practices. Qlik Compose for Data Warehouses reduces time, cost, and risk for BI projects whether they are on-premises, or in the cloud. Qlik Compose for Data Lakes automates data pipelines, resulting in analytics-ready data. By automating data ingestion and schema creation, as well as continual updates, organizations can realize a faster return on their existing data lakes investments. -
14
Data lakehouse is an open architecture that allows you to store, understand and analyze all of your data. It combines the power, richness, and flexibility of data warehouses with the breadth of open-source data technologies. A data lakehouse can easily be built on Oracle Cloud Infrastructure (OCI). It can also be used with pre-built AI services such as Oracle's language service and the latest AI frameworks. Data Flow, a serverless Spark service, allows our customers to concentrate on their Spark workloads using zero infrastructure concepts. Customers of Oracle want to build machine learning-based analytics on their Oracle SaaS data or any SaaS data. Our easy-to-use connectors for Oracle SaaS make it easy to create a lakehouse to analyze all of your SaaS data and reduce time to solve problems.
-
15
Mozart Data
Mozart Data
Mozart Data is the all-in-one modern data platform for consolidating, organizing, and analyzing your data. Set up a modern data stack in an hour, without any engineering. Start getting more out of your data and making data-driven decisions today. -
16
BigLake
Google
$5 per TBBigLake is a storage platform that unifies data warehouses, lakes and allows BigQuery and open-source frameworks such as Spark to access data with fine-grained control. BigLake offers accelerated query performance across multicloud storage and open formats like Apache Iceberg. You can store one copy of your data across all data warehouses and lakes. Multi-cloud governance and fine-grained access control for distributed data. Integration with open-source analytics tools, and open data formats is seamless. You can unlock analytics on distributed data no matter where it is stored. While choosing the best open-source or cloud-native analytics tools over a single copy, you can also access analytics on distributed data. Fine-grained access control for open source engines such as Apache Spark, Presto and Trino and open formats like Parquet. BigQuery supports performant queries on data lakes. Integrates with Dataplex for management at scale, including logical organization. -
17
IBM watsonx.data
IBM
Open, hybrid data lakes for AI and analytics can be used to put your data to use, wherever it is located. Connect your data in any format and from anywhere. Access it through a shared metadata layer. By matching the right workloads to the right query engines, you can optimize workloads in terms of price and performance. Integrate natural-language semantic searching without the need for SQL to unlock AI insights faster. Manage and prepare trusted datasets to improve the accuracy and relevance of your AI applications. Use all of your data everywhere. Watsonx.data offers the speed and flexibility of a warehouse, along with special features that support AI. This allows you to scale AI and analytics throughout your business. Choose the right engines to suit your workloads. You can manage your cost, performance and capability by choosing from a variety of open engines, including Presto C++ and Spark Milvus. -
18
Databricks Data Intelligence Platform
Databricks
The Databricks Data Intelligence Platform enables your entire organization to utilize data and AI. It is built on a lakehouse that provides an open, unified platform for all data and governance. It's powered by a Data Intelligence Engine, which understands the uniqueness in your data. Data and AI companies will win in every industry. Databricks can help you achieve your data and AI goals faster and easier. Databricks combines the benefits of a lakehouse with generative AI to power a Data Intelligence Engine which understands the unique semantics in your data. The Databricks Platform can then optimize performance and manage infrastructure according to the unique needs of your business. The Data Intelligence Engine speaks your organization's native language, making it easy to search for and discover new data. It is just like asking a colleague a question. -
19
Peliqan
Peliqan
$199Peliqan.io provides a data platform that is all-in-one for business teams, IT service providers, startups and scale-ups. No data engineer required. Connect to databases, data warehouses, and SaaS applications. In a spreadsheet interface, you can explore and combine data. Business users can combine multiple data sources, clean data, edit personal copies, and apply transformations. Power users can use SQL on anything, and developers can use Low-code to create interactive data apps, implement writing backs and apply machine intelligence. -
20
Delta Lake
Delta Lake
Delta Lake is an open-source storage platform that allows ACID transactions to Apache Spark™, and other big data workloads. Data lakes often have multiple data pipelines that read and write data simultaneously. This makes it difficult for data engineers to ensure data integrity due to the absence of transactions. Your data lakes will benefit from ACID transactions with Delta Lake. It offers serializability, which is the highest level of isolation. Learn more at Diving into Delta Lake - Unpacking the Transaction log. Even metadata can be considered "big data" in big data. Delta Lake treats metadata the same as data and uses Spark's distributed processing power for all its metadata. Delta Lake is able to handle large tables with billions upon billions of files and partitions at a petabyte scale. Delta Lake allows developers to access snapshots of data, allowing them to revert to earlier versions for audits, rollbacks, or to reproduce experiments. -
21
Secure and manage the data lifecycle, from Edge to AI in any cloud or data centre. Operates on all major public clouds as well as the private cloud with a public experience everywhere. Integrates data management and analytics experiences across the entire data lifecycle. All environments are covered by security, compliance, migration, metadata management. Open source, extensible, and open to multiple data stores. Self-service analytics that is faster, safer, and easier to use. Self-service access to multi-function, integrated analytics on centrally managed business data. This allows for consistent experiences anywhere, whether it is in the cloud or hybrid. You can enjoy consistent data security, governance and lineage as well as deploying the cloud analytics services that business users need. This eliminates the need for shadow IT solutions.
-
22
Vertica
OpenText
The Unified Analytics Warehouse. The Unified Analytics Warehouse is the best place to find high-performing analytics and machine learning at large scale. Tech research analysts are seeing new leaders as they strive to deliver game-changing big data analytics. Vertica empowers data-driven companies so they can make the most of their analytics initiatives. It offers advanced time-series, geospatial, and machine learning capabilities, as well as data lake integration, user-definable extensions, cloud-optimized architecture and more. Vertica's Under the Hood webcast series allows you to dive into the features of Vertica - delivered by Vertica engineers, technical experts, and others - and discover what makes it the most scalable and scalable advanced analytical data database on the market. Vertica supports the most data-driven disruptors around the globe in their pursuit for industry and business transformation. -
23
AtScale
AtScale
AtScale accelerates and simplifies business intelligence. This results in better business decisions and a faster time to insight. Reduce repetitive data engineering tasks such as maintaining, curating, and delivering data for analysis. To ensure consistent KPI reporting across BI tools, you can define business definitions in one place. You can speed up the time it takes to gain insight from data and also manage cloud compute costs efficiently. No matter where your data is located, you can leverage existing data security policies to perform data analytics. AtScale's Insights models and workbooks allow you to perform Cloud OLAP multidimensional analysis using data sets from multiple providers - without any data prep or engineering. To help you quickly gain insights that you can use to make business decisions, we provide easy-to-use dimensions and measures. -
24
AWS Lake Formation
Amazon
AWS Lake Formation makes it simple to create a secure data lake in a matter of days. A data lake is a centrally managed, secured, and curated repository that stores all of your data. It can be both in its original form or prepared for analysis. Data lakes allow you to break down data silos, combine different types of analytics, and gain insights that will guide your business decisions. It is a time-consuming, manual, complex, and tedious task to set up and manage data lakes. This includes loading data from different sources, monitoring data flows, setting partitions, turning encryption on and managing keys, defining and monitoring transformation jobs, reorganizing data in a columnar format, deduplicating redundant information, and matching linked records. Once data has been loaded into a data lake, you will need to give fine-grained access and audit access over time to a wide variety of analytics and machine learning tools and services. -
25
Qubole
Qubole
Qubole is an open, secure, and simple Data Lake Platform that enables machine learning, streaming, or ad-hoc analysis. Our platform offers end-to-end services to reduce the time and effort needed to run Data pipelines and Streaming Analytics workloads on any cloud. Qubole is the only platform that offers more flexibility and openness for data workloads, while also lowering cloud data lake costs up to 50%. Qubole provides faster access to trusted, secure and reliable datasets of structured and unstructured data. This is useful for Machine Learning and Analytics. Users can efficiently perform ETL, analytics, or AI/ML workloads in an end-to-end fashion using best-of-breed engines, multiple formats and libraries, as well as languages that are adapted to data volume and variety, SLAs, and organizational policies. -
26
Querona
YouNeedIT
We make BI and Big Data analytics easier and more efficient. Our goal is to empower business users, make BI specialists and always-busy business more independent when solving data-driven business problems. Querona is a solution for those who have ever been frustrated by a lack in data, slow or tedious report generation, or a long queue to their BI specialist. Querona has a built-in Big Data engine that can handle increasing data volumes. Repeatable queries can be stored and calculated in advance. Querona automatically suggests improvements to queries, making optimization easier. Querona empowers data scientists and business analysts by giving them self-service. They can quickly create and prototype data models, add data sources, optimize queries, and dig into raw data. It is possible to use less IT. Users can now access live data regardless of where it is stored. Querona can cache data if databases are too busy to query live. -
27
IBM®, InfoSphere®, Data Replication allows log-based data capture with transactional integrity to support bigdata integration, consolidation, warehousing, and analytics initiatives at scale. It allows you to replicate data between heterogeneous sources or targets. It supports data upgrades and migrations with zero downtime. IBM InfoSphere Data Replication also provides continuous availability to maintain replicas of databases in remote locations. This allows you to switch a workload to these replicas in seconds instead of hours. To get a first look at the new cloud-tocloud and on-premises-tocloud data replication capabilities, join the beta program. Find out what makes you a good candidate for the beta program, and what you can expect. Register for the IBM Data Replication beta program to get limited access and work with us on the new product direction.
-
28
Dataleyk
Dataleyk
€0.1 per GBDataleyk is a secure, fully-managed cloud platform for SMBs. Our mission is to make Big Data analytics accessible and easy for everyone. Dataleyk is the missing piece to achieving your data-driven goals. Our platform makes it easy to create a stable, flexible, and reliable cloud data lake without any technical knowledge. All of your company data can be brought together, explored with SQL, and visualized with your favorite BI tool. Dataleyk will modernize your data warehouse. Our cloud-based data platform is capable of handling both structured and unstructured data. Data is an asset. Dataleyk, a cloud-based data platform, encrypts all data and offers data warehousing on-demand. Zero maintenance may not be an easy goal. It can be a catalyst for significant delivery improvements, and transformative results. -
29
Lentiq
Lentiq
Lentiq is a data lake that allows small teams to do big tasks. You can quickly run machine learning, data science, and data analysis at scale in any cloud. Lentiq allows your teams to ingest data instantly and then clean, process, and share it. Lentiq allows you to create, train, and share models within your organization. Lentiq allows data teams to collaborate and invent with no restrictions. Data lakes are storage and process environments that provide ML, ETL and schema-on-read querying capabilities. Are you working on data science magic? A data lake is a must. The big, centralized data lake of the Post-Hadoop era is gone. Lentiq uses data pools, which are interconnected, multi-cloud mini-data lakes. They all work together to provide a stable, secure, and fast data science environment. -
30
Qlik Data Integration platform automates the process for providing reliable, accurate and trusted data sets for business analysis. Data engineers are able to quickly add new sources to ensure success at all stages of the data lake pipeline, from real-time data intake, refinement, provisioning and governance. This is a simple and universal solution to continuously ingest enterprise data into popular data lake in real-time. This model-driven approach allows you to quickly design, build, and manage data lakes in the cloud or on-premises. To securely share all your derived data sets, create a smart enterprise-scale database catalog.
-
31
Talend Data Fabric
Qlik
Talend Data Fabric's cloud services are able to efficiently solve all your integration and integrity problems -- on-premises or in cloud, from any source, at any endpoint. Trusted data delivered at the right time for every user. With an intuitive interface and minimal coding, you can easily and quickly integrate data, files, applications, events, and APIs from any source to any location. Integrate quality into data management to ensure compliance with all regulations. This is possible through a collaborative, pervasive, and cohesive approach towards data governance. High quality, reliable data is essential to make informed decisions. It must be derived from real-time and batch processing, and enhanced with market-leading data enrichment and cleaning tools. Make your data more valuable by making it accessible internally and externally. Building APIs is easy with the extensive self-service capabilities. This will improve customer engagement. -
32
e6data
e6data
Limited competition due to high barriers to entry, specialized knowledge, massive capital requirements, and long times to market. The price and performance of existing platforms are virtually identical, reducing the incentive for a switch. It takes months to migrate from one engine's SQL dialect into another engine's SQL. Interoperable with all major standards. Data leaders in enterprise are being hit by a massive surge in computing demand. They are surprised to discover that 10% of heavy, compute-intensive uses cases consume 80% the cost, engineering efforts and stakeholder complaints. Unfortunately, these workloads are mission-critical and nondiscretionary. e6data increases ROI for enterprises' existing data platforms. e6data’s format-neutral computing is unique in that it is equally efficient and performant for all leading data lakehouse formats. -
33
FutureAnalytica
FutureAnalytica
Our platform is the only one that offers an end-to–end platform for AI-powered innovation. It can handle everything from data cleansing and structuring to creating and deploying advanced data-science models to infusing advanced analytics algorithms, to infusing Recommendation AI, to deducing outcomes with simple-to-deduce visualization dashboards as well as Explainable AI to track how the outcomes were calculated. Our platform provides a seamless, holistic data science experience. FutureAnalytica offers key features such as a robust Data Lakehouse and an AI Studio. There is also a comprehensive AI Marketplace. You can also get support from a world-class team of data-science experts (on a case-by-case basis). FutureAnalytica will help you save time, effort, and money on your data-science and AI journey. Start discussions with the leadership and then a quick technology assessment within 1-3 days. In 10-18 days, you can create ready-to-integrate AI solutions with FA's fully-automated data science & AI platform. -
34
Your cloud data platform. Access to any data you need with unlimited scalability. All your data is available to you, with the near-infinite performance and concurrency required by your organization. You can seamlessly share and consume shared data across your organization to collaborate and solve your most difficult business problems. You can increase productivity and reduce time to value by collaborating with data professionals to quickly deliver integrated data solutions from any location in your organization. Our technology partners and system integrators can help you deploy Snowflake to your success, no matter if you are moving data into Snowflake.
-
35
Varada
Varada
Varada's adaptive and dynamic big data indexing solution allows you to balance cost and performance with zero data-ops. Varada's big data indexing technology is a smart acceleration layer for your data lake. It remains the single source and truth and runs in the customer's cloud environment (VPC). Varada allows data teams to democratize data. It allows them to operationalize the entire data lake and ensures interactive performance without the need for data to be moved, modelled, or manually optimized. Our ability to dynamically and automatically index relevant data at the source structure and granularity is our secret sauce. Varada allows any query to meet constantly changing performance and concurrency requirements of users and analytics API calls. It also keeps costs predictable and under control. The platform automatically determines which queries to speed up and which data to index. Varada adjusts the cluster elastically to meet demand and optimize performance and cost. -
36
Infor Data Lake
Infor
Big data is essential for solving today's industry and enterprise problems. The ability to capture data from across your enterprise--whether generated by disparate applications, people, or IoT infrastructure-offers tremendous potential. Data Lake tools from Infor provide schema-on-read intelligence and a flexible data consumption framework that enables new ways to make key decisions. You can use leveraged access to all of your Infor ecosystem to start capturing and delivering large data to power your next generation machine learning and analytics strategies. The Infor Data Lake is infinitely scalable and provides a central repository for all your enterprise data. You can grow with your insights and investments, ingest additional content for better informed decision making, improve your analytics profiles and provide rich data sets that will enable you to build more powerful machine-learning processes. -
37
UnifyApps
UnifyApps
Reduce fragmented system & bridge data sylos by enabling teams to build complex applications, automate work flows and build data pipelines. Automate complex business workflows across multiple applications in minutes. Build and deploy applications for internal and external customers. Use a variety of rich, pre-built components. Security and governance of enterprise-grade, robust debugging, and change management. Build enterprise-grade apps 10x faster, without writing code. Automate complex business process across applications in minutes. Powered by enterprise reliability features such as caching, rate-limiting, and circuit breakers. Connector SDK allows you to build custom integrations within a single day. Real-time data replication to any destination system from any source. Instantly move data between applications, data warehouses or data lakes. Automate schema mapping and preload transformations. -
38
NewEvol
Sattrix Software Solutions
NewEvol is a technologically advanced product suite that uses advanced analytics and data science to identify anomalies in data. NewEvol is a powerful tool that can be used to compile data for small and large enterprises. It supports rule-based alerting, visualization, automation, and responses. NewEvol is a robust system that can handle challenging business requirements. NewEvol Expertise 1. Data Lake 2. SIEM 3. SOAR 4. Threat Intelligence 5. Analytics -
39
Cortex Data Lake
Cortex
Palo Alto Networks solutions can be enabled by integrating security data from your enterprise. Rapidly simplify security operations by integrating, transforming, and collecting your enterprise's security information. Access to rich data at cloud native scale enables AI and machine learning. Using trillions of multi-source artifacts, you can significantly improve detection accuracy. Cortex XDR™, the industry's leading prevention, detection, response platform, runs on fully integrated network, endpoint, and cloud data. Prisma™, Access protects applications, remote networks, and mobile users in a consistent way, no matter where they are. All users can access all applications via a cloud-delivered architecture, regardless of whether they are at headquarters, branch offices, or on the road. Combining Panorama™, Cortex™, and Data Lake management creates an affordable, cloud-based log solution for Palo Alto Networks Next-Generation Firewalls. Cloud scale, zero hardware, available anywhere. -
40
Utilihive
Greenbird Integration Technology
Utilihive, a cloud-native big-data integration platform, is offered as a managed (SaaS) service. Utilihive, the most popular Enterprise-iPaaS (iPaaS), is specifically designed for utility and energy usage scenarios. Utilihive offers both the technical infrastructure platform (connectivity and integration, data ingestion and data lake management) and preconfigured integration content or accelerators. (connectors and data flows, orchestrations and utility data model, energy services, monitoring and reporting dashboards). This allows for faster delivery of data-driven services and simplifies operations. -
41
PoINT Data Replicator
PoINT Software & Systems
Organizations store unstructured data in file system, but are increasingly storing it in object and cloud storage. Cloud and object storage offer many advantages, especially for inactive data. This means that files must be migrated or replicated (e.g. From legacy NAS to cloud or object storage. Cloud and object storage are becoming more popular. This has led to an underestimated security risk. Most data stored in the cloud and on-premises object storage are not backed up as it is believed to remain secure. This assumption is dangerous and negligent. Cloud services and object storage products offer redundancy and high availability, but they do not protect against human error or ransomware, malware, and other technological failures. Cloud and object data also need to be backup or replicated, most appropriate on a separate storage technology at a different location, in the original format, as stored in object storage and cloud services. -
42
Oracle Autonomous Data Warehouse, a cloud-based data warehouse service, eliminates the complexity of operating a data warehouse, data warehouse center, or dw cloud. It also makes it easy to secure data and develop data-driven apps. It automates provisioning and tuning, scaling, security, tuning, scaling, as well as backing up the data warehouse. It provides tools for self-service data loading and data transformations, business models and automatic insights. There are also built-in converged databases capabilities that allow for simpler queries across multiple types of data and machine learning analysis. It is available in both the Oracle cloud public and customers' data centers using Oracle Cloud@Customer. DSC, an industry expert, has provided a detailed analysis that demonstrates why Oracle Autonomous Data Warehouse is a better choice for most global organizations. Find out about compatible applications and tools with Autonomous Data Warehouse.
-
43
Azure Synapse Analytics
Microsoft
1 RatingAzure Synapse is the Azure SQL Data Warehouse. Azure Synapse, a limitless analytics platform that combines enterprise data warehouse and Big Data analytics, is called Azure Synapse. It allows you to query data at your own pace, with either serverless or provisioned resources - at scale. Azure Synapse combines these two worlds with a single experience to ingest and prepare, manage and serve data for machine learning and BI needs. -
44
Zaloni Arena
Zaloni
End-to-end DataOps built upon an agile platform that protects and improves your data assets. Arena is the leading augmented data management platform. Our active data catalog allows for self-service data enrichment to control complex data environments. You can create custom workflows to increase the reliability and accuracy of each data set. Machine-learning can be used to identify and align master assets for better data decisions. Superior security is assured with complete lineage, including detailed visualizations and masking. Data management is easy with Arena. Arena can catalog your data from any location. Our extensible connections allow for analytics across all your preferred tools. Overcome data sprawl challenges with our software. Our software is designed to drive business and analytics success, while also providing the controls and extensibility required in today's multicloud data complexity. -
45
IBM®, Db2®, Warehouse is a client-managed preconfigured data warehouse that runs on private clouds, virtual private cloud, and other container-supported infrastructures. It is the ideal hybrid cloud solution for those who need to retain control over their data, but still want cloud-like flexibility. Db2 Warehouse allows you to bring AI into your business faster and more easily with built-in machine-learning, automated scaling, and built-in analytics. You can deploy a pre-configured data store in minutes on any supported infrastructure. Elastic scaling allows for easy updates and upgrades. Enterprise AI can operate faster and more efficiently by applying in-database analytics to the data. Your application can be written once and moved to the correct location -- public cloud, private cloud, or on-premises -- with minimal changes.
-
46
Data Lakes on AWS
Amazon
Many customers of Amazon Web Services (AWS), require data storage and analytics solutions that are more flexible and agile than traditional data management systems. Data lakes are a popular way to store and analyze data. They allow companies to manage multiple data types, from many sources, and store these data in a central repository. AWS Cloud offers many building blocks to enable customers to create a secure, flexible, cost-effective data lake. These services include AWS managed services that allow you to ingest, store and find structured and unstructured data. AWS offers the data solution to support customers in building data lakes. This is an automated reference implementation that deploys an efficient, cost-effective, high-availability data lake architecture on AWS Cloud. It also includes a user-friendly console for searching for and requesting data. -
47
Azure Data Lake
Microsoft
Azure Data Lake offers all the capabilities needed to make it easy to store and analyze data across all platforms and languages. It eliminates the complexity of ingesting, storing, and streaming data, making it easier to get up-and-running with interactive, batch, and streaming analytics. Azure Data Lake integrates with existing IT investments to simplify data management and governance. It can also seamlessly integrate with existing IT investments such as data warehouses and operational stores, allowing you to extend your current data applications. We have the experience of working with enterprise customers, running large-scale processing and analytics for Microsoft businesses such as Office 365, Microsoft Windows, Bing, Azure, Windows, Windows, and Microsoft Windows. Azure Data Lake solves many productivity and scaling issues that prevent you from maximizing the potential of your data. -
48
ELCA Smart Data Lake Builder
ELCA Group
FreeThe classic data lake is often reduced to simple but inexpensive raw data storage. This neglects important aspects like data quality, security, and transformation. These topics are left to data scientists who spend up to 80% of their time cleaning, understanding, and acquiring data before they can use their core competencies. Additionally, traditional Data Lakes are often implemented in different departments using different standards and tools. This makes it difficult to implement comprehensive analytical use cases. Smart Data Lakes address these issues by providing methodical and architectural guidelines as well as an efficient tool to create a strong, high-quality data foundation. Smart Data Lakes are the heart of any modern analytics platform. They integrate all the most popular Data Science tools and open-source technologies as well as AI/ML. Their storage is affordable and scalable, and can store both structured and unstructured data. -
49
Upsolver
Upsolver
Upsolver makes it easy to create a governed data lake, manage, integrate, and prepare streaming data for analysis. Only use auto-generated schema on-read SQL to create pipelines. A visual IDE that makes it easy to build pipelines. Add Upserts to data lake tables. Mix streaming and large-scale batch data. Automated schema evolution and reprocessing of previous state. Automated orchestration of pipelines (no Dags). Fully-managed execution at scale Strong consistency guarantee over object storage Nearly zero maintenance overhead for analytics-ready information. Integral hygiene for data lake tables, including columnar formats, partitioning and compaction, as well as vacuuming. Low cost, 100,000 events per second (billions every day) Continuous lock-free compaction to eliminate the "small file" problem. Parquet-based tables are ideal for quick queries. -
50
100% compatible with Netezza Upgrade via a single command-line line. Available on premises, in the cloud, or hybrid. IBM®, Netezza®, Performance Server for IBM Cloud Pack® Data is an advanced data warehouse platform and analytics platform that is available on premises or on the cloud. This next generation of Netezza includes enhancements to the in-database analytics capabilities. You can do data science and machinelearning with data volumes scaling to the petabytes. Fast failure recovery and failure detection. Upgrade existing systems with a single command-line command. Ability to query multiple systems simultaneously. Select the nearest availability zone or data center, select the required number of compute units, and then go. IBM®, Netezza®, Performance Server for IBM Cloud® for Data is available via Amazon Web Services, Microsoft Azure, and IBM Cloud®. Netezza can be deployed on a private cloud using IBM Cloud Pak Data System.