Dragonfly
Dragonfly serves as a seamless substitute for Redis, offering enhanced performance while reducing costs. It is specifically engineered to harness the capabilities of contemporary cloud infrastructure, catering to the data requirements of today’s applications, thereby liberating developers from the constraints posed by conventional in-memory data solutions. Legacy software cannot fully exploit the advantages of modern cloud technology. With its optimization for cloud environments, Dragonfly achieves an impressive 25 times more throughput and reduces snapshotting latency by 12 times compared to older in-memory data solutions like Redis, making it easier to provide the immediate responses that users demand. The traditional single-threaded architecture of Redis leads to high expenses when scaling workloads. In contrast, Dragonfly is significantly more efficient in both computation and memory usage, potentially reducing infrastructure expenses by up to 80%. Initially, Dragonfly scales vertically, only transitioning to clustering when absolutely necessary at a very high scale, which simplifies the operational framework and enhances system reliability. Consequently, developers can focus more on innovation rather than infrastructure management.
Learn more
Google Compute Engine
Compute Engine (IaaS), a platform from Google that allows organizations to create and manage cloud-based virtual machines, is an infrastructure as a services (IaaS).
Computing infrastructure in predefined sizes or custom machine shapes to accelerate cloud transformation. General purpose machines (E2, N1,N2,N2D) offer a good compromise between price and performance. Compute optimized machines (C2) offer high-end performance vCPUs for compute-intensive workloads. Memory optimized (M2) systems offer the highest amount of memory and are ideal for in-memory database applications. Accelerator optimized machines (A2) are based on A100 GPUs, and are designed for high-demanding applications. Integrate Compute services with other Google Cloud Services, such as AI/ML or data analytics. Reservations can help you ensure that your applications will have the capacity needed as they scale. You can save money by running Compute using the sustained-use discount, and you can even save more when you use the committed-use discount.
Learn more
QC Ware Forge
Discover innovative and effective turn-key algorithms designed specifically for data scientists, alongside robust circuit components tailored for quantum engineers. These turn-key implementations cater to the needs of data scientists, financial analysts, and various engineers alike. Delve into challenges related to binary optimization, machine learning, linear algebra, and Monte Carlo sampling, whether on simulators or actual quantum hardware. No background in quantum computing is necessary to get started. Utilize NISQ data loader circuits to transform classical data into quantum states, thereby enhancing your algorithmic capabilities. Leverage our circuit components for linear algebra tasks, such as distance estimation and matrix multiplication. You can also customize your own algorithms using these building blocks. Experience a notable enhancement in performance when working with D-Wave hardware, along with the latest advancements in gate-based methodologies. Additionally, experiment with quantum data loaders and algorithms that promise significant speed improvements in areas like clustering, classification, and regression analysis. This is an exciting opportunity for anyone looking to bridge classical and quantum computing.
Learn more
Rocky Linux
CIQ empowers people to do amazing things by providing innovative and stable software infrastructure solutions for all computing needs. From the base operating system, through containers, orchestration, provisioning, computing, and cloud applications, CIQ works with every part of the technology stack to drive solutions for customers and communities with stable, scalable, secure production environments. CIQ is the founding support and services partner of Rocky Linux, and the creator of the next generation federated computing stack.
Learn more