LM-Kit.NET
LM-Kit.NET is an enterprise-grade toolkit designed for seamlessly integrating generative AI into your .NET applications, fully supporting Windows, Linux, and macOS. Empower your C# and VB.NET projects with a flexible platform that simplifies the creation and orchestration of dynamic AI agents.
Leverage efficient Small Language Models for on‑device inference, reducing computational load, minimizing latency, and enhancing security by processing data locally. Experience the power of Retrieval‑Augmented Generation (RAG) to boost accuracy and relevance, while advanced AI agents simplify complex workflows and accelerate development.
Native SDKs ensure smooth integration and high performance across diverse platforms. With robust support for custom AI agent development and multi‑agent orchestration, LM‑Kit.NET streamlines prototyping, deployment, and scalability—enabling you to build smarter, faster, and more secure solutions trusted by professionals worldwide.
Learn more
Stack AI
AI agents that interact and answer questions with users and complete tasks using your data and APIs. AI that can answer questions, summarize and extract insights from any long document. Transfer styles and formats, as well as tags and summaries between documents and data sources. Stack AI is used by developer teams to automate customer service, process documents, qualify leads, and search libraries of data. With a single button, you can try multiple LLM architectures and prompts. Collect data, run fine-tuning tasks and build the optimal LLM to fit your product. We host your workflows in APIs, so that your users have access to AI instantly. Compare the fine-tuning services of different LLM providers.
Learn more
Vertex AI
Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case.
Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
Learn more
Agno
Agno is a streamlined framework designed for creating agents equipped with memory, knowledge, tools, and reasoning capabilities. It allows developers to construct a variety of agents, including reasoning agents, multimodal agents, teams of agents, and comprehensive agent workflows. Additionally, Agno features an attractive user interface that facilitates communication with agents and includes tools for performance monitoring and evaluation. Being model-agnostic, it ensures a consistent interface across more than 23 model providers, eliminating the risk of vendor lock-in. Agents can be instantiated in roughly 2μs on average, which is about 10,000 times quicker than LangGraph, while consuming an average of only 3.75KiB of memory—50 times less than LangGraph. The framework prioritizes reasoning, enabling agents to engage in "thinking" and "analysis" through reasoning models, ReasoningTools, or a tailored CoT+Tool-use method. Furthermore, Agno supports native multimodality, allowing agents to handle various inputs and outputs such as text, images, audio, and video. The framework's sophisticated multi-agent architecture encompasses three operational modes: route, collaborate, and coordinate, enhancing the flexibility and effectiveness of agent interactions. By integrating these features, Agno provides a robust platform for developing intelligent agents that can adapt to diverse tasks and scenarios.
Learn more