Best Conduktor Alternatives in 2025
Find the top alternatives to Conduktor currently available. Compare ratings, reviews, pricing, and features of Conduktor alternatives in 2025. Slashdot lists the best Conduktor alternatives on the market that offer competing products that are similar to Conduktor. Sort through Conduktor alternatives below to make the best choice for your needs
-
1
MongoDB Atlas
MongoDB
1,632 RatingsMongoDB Atlas stands out as the leading cloud database service available, offering unparalleled data distribution and seamless mobility across all major platforms, including AWS, Azure, and Google Cloud. Its built-in automation tools enhance resource management and workload optimization, making it the go-to choice for modern application deployment. As a fully managed service, it ensures best-in-class automation and adheres to established practices that support high availability, scalability, and compliance with stringent data security and privacy regulations. Furthermore, MongoDB Atlas provides robust security controls tailored for your data needs, allowing for the integration of enterprise-grade features that align with existing security protocols and compliance measures. With preconfigured elements for authentication, authorization, and encryption, you can rest assured that your data remains secure and protected at all times. Ultimately, MongoDB Atlas not only simplifies deployment and scaling in the cloud but also fortifies your data with comprehensive security features that adapt to evolving requirements. -
2
Big Data Quality must always be verified to ensure that data is safe, accurate, and complete. Data is moved through multiple IT platforms or stored in Data Lakes. The Big Data Challenge: Data often loses its trustworthiness because of (i) Undiscovered errors in incoming data (iii). Multiple data sources that get out-of-synchrony over time (iii). Structural changes to data in downstream processes not expected downstream and (iv) multiple IT platforms (Hadoop DW, Cloud). Unexpected errors can occur when data moves between systems, such as from a Data Warehouse to a Hadoop environment, NoSQL database, or the Cloud. Data can change unexpectedly due to poor processes, ad-hoc data policies, poor data storage and control, and lack of control over certain data sources (e.g., external providers). DataBuck is an autonomous, self-learning, Big Data Quality validation tool and Data Matching tool.
-
3
Azure Event Hubs
Microsoft
$0.03 per hourEvent Hubs provides a fully managed service for real-time data ingestion that is easy to use, reliable, and highly scalable. It enables the streaming of millions of events every second from various sources, facilitating the creation of dynamic data pipelines that allow businesses to quickly address challenges. In times of crisis, you can continue data processing thanks to its geo-disaster recovery and geo-replication capabilities. Additionally, it integrates effortlessly with other Azure services, enabling users to derive valuable insights. Existing Apache Kafka clients can communicate with Event Hubs without requiring code alterations, offering a managed Kafka experience while eliminating the need to maintain individual clusters. Users can enjoy both real-time data ingestion and microbatching on the same stream, allowing them to concentrate on gaining insights rather than managing infrastructure. By leveraging Event Hubs, organizations can rapidly construct real-time big data pipelines and swiftly tackle business issues as they arise, enhancing their operational efficiency. -
4
kPow
Factor House
$2,650 per cluster per yearWe know how simple Apache Kafka®, can be when you have the right tools. kPow was created to simplify the Kafka development experience and save businesses time and money. kPow makes it easy to find the root cause of production problems in a matter of clicks and not hours. With kPow's Data Inspect and kREPL functions, you can search tens of thousands messages per second. Are you new to Kafka kPow's Kafka UI is unique and allows developers to quickly understand the core Kafka concepts. You can upskill new members of your team and increase your Kafka knowledge. kPow offers a range of Kafka management features and monitoring capabilities in a single Docker Container. You can manage multiple clusters and schema registries. Connect installs with one instance. -
5
Apache Kafka
The Apache Software Foundation
1 RatingApache Kafka® is a robust, open-source platform designed for distributed streaming. It can scale production environments to accommodate up to a thousand brokers, handling trillions of messages daily and managing petabytes of data with hundreds of thousands of partitions. The system allows for elastic growth and reduction of both storage and processing capabilities. Furthermore, it enables efficient cluster expansion across availability zones or facilitates the interconnection of distinct clusters across various geographic locations. Users can process event streams through features such as joins, aggregations, filters, transformations, and more, all while utilizing event-time and exactly-once processing guarantees. Kafka's built-in Connect interface seamlessly integrates with a wide range of event sources and sinks, including Postgres, JMS, Elasticsearch, AWS S3, among others. Additionally, developers can read, write, and manipulate event streams using a diverse selection of programming languages, enhancing the platform's versatility and accessibility. This extensive support for various integrations and programming environments makes Kafka a powerful tool for modern data architectures. -
6
Axual
Axual
Axual provides a Kafka-as-a-Service tailored for DevOps teams, empowering them to extract insights and make informed decisions through our user-friendly Kafka platform. For enterprises seeking to effortlessly incorporate data streaming into their essential IT frameworks, Axual presents the perfect solution. Our comprehensive Kafka platform is crafted to remove the necessity for deep technical expertise, offering a ready-made service that allows users to enjoy the advantages of event streaming without complications. The Axual Platform serves as an all-encompassing solution, aimed at simplifying and improving the deployment, management, and use of real-time data streaming with Apache Kafka. With a robust suite of features designed to meet the varied demands of contemporary businesses, the Axual Platform empowers organizations to fully leverage the capabilities of data streaming while reducing complexity and minimizing operational burdens. Additionally, our platform ensures that your team can focus on innovation rather than getting bogged down by technical challenges. -
7
Red Hat OpenShift Streams
Red Hat
Red Hat® OpenShift® Streams for Apache Kafka is a cloud-managed service designed to enhance the developer experience for creating, deploying, and scaling cloud-native applications, as well as for modernizing legacy systems. This service simplifies the processes of creating, discovering, and connecting to real-time data streams, regardless of their deployment location. Streams play a crucial role in the development of event-driven applications and data analytics solutions. By enabling seamless operations across distributed microservices and handling large data transfer volumes with ease, it allows teams to leverage their strengths, accelerate their time to value, and reduce operational expenses. Additionally, OpenShift Streams for Apache Kafka features a robust Kafka ecosystem and is part of a broader suite of cloud services within the Red Hat OpenShift product family, empowering users to develop a diverse array of data-driven applications. With its powerful capabilities, this service ultimately supports organizations in navigating the complexities of modern software development. -
8
Amazon MSK
Amazon
$0.0543 per hourAmazon Managed Streaming for Apache Kafka (Amazon MSK) simplifies the process of creating and operating applications that leverage Apache Kafka for handling streaming data. As an open-source framework, Apache Kafka enables the construction of real-time data pipelines and applications. Utilizing Amazon MSK allows you to harness the native APIs of Apache Kafka for various tasks, such as populating data lakes, facilitating data exchange between databases, and fueling machine learning and analytical solutions. However, managing Apache Kafka clusters independently can be quite complex, requiring tasks like server provisioning, manual configuration, and handling server failures. Additionally, you must orchestrate updates and patches, design the cluster to ensure high availability, secure and durably store data, establish monitoring systems, and strategically plan for scaling to accommodate fluctuating workloads. By utilizing Amazon MSK, you can alleviate many of these burdens and focus more on developing your applications rather than managing the underlying infrastructure. -
9
WarpStream
WarpStream
$2,987 per monthWarpStream serves as a data streaming platform that is fully compatible with Apache Kafka, leveraging object storage to eliminate inter-AZ networking expenses and disk management, while offering infinite scalability within your VPC. The deployment of WarpStream occurs through a stateless, auto-scaling agent binary, which operates without the need for local disk management. This innovative approach allows agents to stream data directly to and from object storage, bypassing local disk buffering and avoiding any data tiering challenges. Users can instantly create new “virtual clusters” through our control plane, accommodating various environments, teams, or projects without the hassle of dedicated infrastructure. With its seamless protocol compatibility with Apache Kafka, WarpStream allows you to continue using your preferred tools and software without any need for application rewrites or proprietary SDKs. By simply updating the URL in your Kafka client library, you can begin streaming immediately, ensuring that you never have to compromise between reliability and cost-effectiveness again. Additionally, this flexibility fosters an environment where innovation can thrive without the constraints of traditional infrastructure. -
10
Google Cloud Dataflow
Google
Data processing that integrates both streaming and batch operations while being serverless, efficient, and budget-friendly. It offers a fully managed service for data processing, ensuring seamless automation in the provisioning and administration of resources. With horizontal autoscaling capabilities, worker resources can be adjusted dynamically to enhance overall resource efficiency. The innovation is driven by the open-source community, particularly through the Apache Beam SDK. This platform guarantees reliable and consistent processing with exactly-once semantics. Dataflow accelerates the development of streaming data pipelines, significantly reducing data latency in the process. By adopting a serverless model, teams can devote their efforts to programming rather than the complexities of managing server clusters, effectively eliminating the operational burdens typically associated with data engineering tasks. Additionally, Dataflow’s automated resource management not only minimizes latency but also optimizes utilization, ensuring that teams can operate with maximum efficiency. Furthermore, this approach promotes a collaborative environment where developers can focus on building robust applications without the distraction of underlying infrastructure concerns. -
11
RudderStack
RudderStack
$750/month RudderStack is the smart customer information pipeline. You can easily build pipelines that connect your entire customer data stack. Then, make them smarter by pulling data from your data warehouse to trigger enrichment in customer tools for identity sewing and other advanced uses cases. Start building smarter customer data pipelines today. -
12
Aiven for Apache Kafka
Aiven
$200 per monthExperience Apache Kafka offered as a fully managed service that avoids vendor lock-in while providing comprehensive features for constructing your streaming pipeline. You can establish a fully managed Kafka instance in under 10 minutes using our intuitive web console or programmatically through our API, CLI, Terraform provider, or Kubernetes operator. Seamlessly integrate it with your current technology infrastructure using more than 30 available connectors, and rest assured with comprehensive logs and metrics that come standard through our service integrations. This fully managed distributed data streaming platform can be deployed in any cloud environment of your choice. It’s perfectly suited for applications that rely on event-driven architectures, facilitating near-real-time data transfers and pipelines, stream analytics, and any situation where swift data movement between applications is essential. With Aiven’s hosted and expertly managed Apache Kafka, you can effortlessly set up clusters, add new nodes, transition between cloud environments, and update existing versions with just a single click, all while keeping an eye on performance through a user-friendly dashboard. Additionally, this service enables businesses to scale their data solutions efficiently as their needs evolve. -
13
Spring Cloud Data Flow
Spring
Microservices architecture enables efficient streaming and batch data processing specifically designed for platforms like Cloud Foundry and Kubernetes. By utilizing Spring Cloud Data Flow, users can effectively design intricate topologies for their data pipelines, which feature Spring Boot applications developed with the Spring Cloud Stream or Spring Cloud Task frameworks. This powerful tool caters to a variety of data processing needs, encompassing areas such as ETL, data import/export, event streaming, and predictive analytics. The Spring Cloud Data Flow server leverages Spring Cloud Deployer to facilitate the deployment of these data pipelines, which consist of Spring Cloud Stream or Spring Cloud Task applications, onto contemporary infrastructures like Cloud Foundry and Kubernetes. Additionally, a curated selection of pre-built starter applications for streaming and batch tasks supports diverse data integration and processing scenarios, aiding users in their learning and experimentation endeavors. Furthermore, developers have the flexibility to create custom stream and task applications tailored to specific middleware or data services, all while adhering to the user-friendly Spring Boot programming model. This adaptability makes Spring Cloud Data Flow a valuable asset for organizations looking to optimize their data workflows. -
14
DeltaStream
DeltaStream
DeltaStream is an integrated serverless streaming processing platform that integrates seamlessly with streaming storage services. Imagine it as a compute layer on top your streaming storage. It offers streaming databases and streaming analytics along with other features to provide an integrated platform for managing, processing, securing and sharing streaming data. DeltaStream has a SQL-based interface that allows you to easily create stream processing apps such as streaming pipelines. It uses Apache Flink, a pluggable stream processing engine. DeltaStream is much more than a query-processing layer on top Kafka or Kinesis. It brings relational databases concepts to the world of data streaming, including namespacing, role-based access control, and enables you to securely access and process your streaming data, regardless of where it is stored. -
15
Eclipse Streamsheets
Cedalo
Create advanced applications that streamline workflows, provide ongoing operational monitoring, and manage processes in real-time. Your solutions are designed to operate continuously on cloud servers as well as edge devices. Utilizing a familiar spreadsheet interface, you don't need to be a programmer; instead, you can simply drag and drop data, enter formulas into cells, and create charts in an intuitive manner. All the essential protocols required for connecting to sensors and machinery, such as MQTT, REST, and OPC UA, are readily available. Streamsheets specializes in processing streaming data, including formats like MQTT and Kafka. You can select a topic stream, modify it as needed, and send it back into the vast world of streaming data. With REST, you gain access to a multitude of web services, while Streamsheets enables seamless connections both ways. Not only do Streamsheets operate in the cloud and on your servers, but they can also be deployed on edge devices, including Raspberry Pi, expanding their versatility to various environments. This flexibility allows businesses to adapt their systems according to their specific operational needs. -
16
Pandio
Pandio
$1.40 per hourIt is difficult, costly, and risky to connect systems to scale AI projects. Pandio's cloud native managed solution simplifies data pipelines to harness AI's power. You can access your data from any location at any time to query, analyze, or drive to insight. Big data analytics without the high cost Enable data movement seamlessly. Streaming, queuing, and pub-sub with unparalleled throughput, latency and durability. In less than 30 minutes, you can design, train, deploy, and test machine learning models locally. Accelerate your journey to ML and democratize it across your organization. It doesn't take months or years of disappointment. Pandio's AI driven architecture automatically orchestrates all your models, data and ML tools. Pandio can be integrated with your existing stack to help you accelerate your ML efforts. Orchestrate your messages and models across your organization. -
17
Superstream
Superstream
Superstream: An AI Solution That Lowers Expenses and Boosts Kafka Performance by 75%, With Zero Modifications to Your Current Infrastructure. -
18
The Streaming service is a real-time, serverless platform for event streaming that is compatible with Apache Kafka, designed specifically for developers and data scientists. It is seamlessly integrated with Oracle Cloud Infrastructure (OCI), Database, GoldenGate, and Integration Cloud. Furthermore, the service offers ready-made integrations with numerous third-party products spanning various categories, including DevOps, databases, big data, and SaaS applications. Data engineers can effortlessly establish and manage extensive big data pipelines. Oracle takes care of all aspects of infrastructure and platform management for event streaming, which encompasses provisioning, scaling, and applying security updates. Additionally, by utilizing consumer groups, Streaming effectively manages state for thousands of consumers, making it easier for developers to create applications that can scale efficiently. This comprehensive approach not only streamlines the development process but also enhances overall operational efficiency.
-
19
Nussknacker
Nussknacker
0Nussknacker allows domain experts to use a visual tool that is low-code to help them create and execute real-time decisioning algorithm instead of writing code. It is used to perform real-time actions on data: real-time marketing and fraud detection, Internet of Things customer 360, Machine Learning inferring, and Internet of Things customer 360. A visual design tool for decision algorithm is an essential part of Nussknacker. It allows non-technical users, such as analysts or business people, to define decision logic in a clear, concise, and easy-to-follow manner. With a click, scenarios can be deployed for execution once they have been created. They can be modified and redeployed whenever there is a need. Nussknacker supports streaming and request-response processing modes. It uses Kafka as its primary interface in streaming mode. It supports both stateful processing and stateless processing. -
20
IBM StreamSets
IBM
$1000 per monthIBM® StreamSets allows users to create and maintain smart streaming data pipelines using an intuitive graphical user interface. This facilitates seamless data integration in hybrid and multicloud environments. IBM StreamSets is used by leading global companies to support millions data pipelines, for modern analytics and intelligent applications. Reduce data staleness, and enable real-time information at scale. Handle millions of records across thousands of pipelines in seconds. Drag-and-drop processors that automatically detect and adapt to data drift will protect your data pipelines against unexpected changes and shifts. Create streaming pipelines for ingesting structured, semistructured, or unstructured data to deliver it to multiple destinations. -
21
DoubleCloud
DoubleCloud
$0.024 per 1 GB per monthOptimize your time and reduce expenses by simplifying data pipelines using hassle-free open source solutions. Covering everything from data ingestion to visualization, all components are seamlessly integrated, fully managed, and exceptionally reliable, ensuring your engineering team enjoys working with data. You can opt for any of DoubleCloud’s managed open source services or take advantage of the entire platform's capabilities, which include data storage, orchestration, ELT, and instantaneous visualization. We offer premier open source services such as ClickHouse, Kafka, and Airflow, deployable on platforms like Amazon Web Services or Google Cloud. Our no-code ELT tool enables real-time data synchronization between various systems, providing a fast, serverless solution that integrates effortlessly with your existing setup. With our managed open-source data visualization tools, you can easily create real-time visual representations of your data through interactive charts and dashboards. Ultimately, our platform is crafted to enhance the daily operations of engineers, making their tasks more efficient and enjoyable. This focus on convenience is what sets us apart in the industry. -
22
Lenses
Lenses.io
$49 per monthEmpower individuals to explore and analyze streaming data effectively. By sharing, documenting, and organizing your data, you can boost productivity by as much as 95%. Once you have your data, you can create applications tailored for real-world use cases. Implement a security model focused on data to address the vulnerabilities associated with open source technologies, ensuring data privacy is prioritized. Additionally, offer secure and low-code data pipeline functionalities that enhance usability. Illuminate all hidden aspects and provide unmatched visibility into data and applications. Integrate your data mesh and technological assets, ensuring you can confidently utilize open-source solutions in production environments. Lenses has been recognized as the premier product for real-time stream analytics, based on independent third-party evaluations. With insights gathered from our community and countless hours of engineering, we have developed features that allow you to concentrate on what generates value from your real-time data. Moreover, you can deploy and operate SQL-based real-time applications seamlessly over any Kafka Connect or Kubernetes infrastructure, including AWS EKS, making it easier than ever to harness the power of your data. By doing so, you will not only streamline operations but also unlock new opportunities for innovation. -
23
Cloudera DataFlow
Cloudera
Cloudera DataFlow for the Public Cloud (CDF-PC) is a versatile, cloud-based data distribution solution that utilizes Apache NiFi, enabling developers to seamlessly connect to diverse data sources with varying structures, process that data, and deliver it to a wide array of destinations. This platform features a flow-oriented low-code development approach that closely matches the preferences of developers when creating, developing, and testing their data distribution pipelines. CDF-PC boasts an extensive library of over 400 connectors and processors that cater to a broad spectrum of hybrid cloud services, including data lakes, lakehouses, cloud warehouses, and on-premises sources, ensuring efficient and flexible data distribution. Furthermore, the data flows created can be version-controlled within a catalog, allowing operators to easily manage deployments across different runtimes, thereby enhancing operational efficiency and simplifying the deployment process. Ultimately, CDF-PC empowers organizations to harness their data effectively, promoting innovation and agility in data management. -
24
Confluent
Confluent
Achieve limitless data retention for Apache Kafka® with Confluent, empowering you to be infrastructure-enabled rather than constrained by outdated systems. Traditional technologies often force a choice between real-time processing and scalability, but event streaming allows you to harness both advantages simultaneously, paving the way for innovation and success. Have you ever considered how your rideshare application effortlessly analyzes vast datasets from various sources to provide real-time estimated arrival times? Or how your credit card provider monitors millions of transactions worldwide, promptly alerting users to potential fraud? The key to these capabilities lies in event streaming. Transition to microservices and facilitate your hybrid approach with a reliable connection to the cloud. Eliminate silos to ensure compliance and enjoy continuous, real-time event delivery. The possibilities truly are limitless, and the potential for growth is unprecedented. -
25
Amazon MWAA
Amazon
$0.49 per hourAmazon Managed Workflows for Apache Airflow (MWAA) is a service that simplifies the orchestration of Apache Airflow, allowing users to efficiently establish and manage comprehensive data pipelines in the cloud at scale. Apache Airflow itself is an open-source platform designed for the programmatic creation, scheduling, and oversight of workflows, which are sequences of various processes and tasks. By utilizing Managed Workflows, users can leverage Airflow and Python to design workflows while eliminating the need to handle the complexities of the underlying infrastructure, ensuring scalability, availability, and security. This service adapts its workflow execution capabilities automatically to align with user demands and incorporates AWS security features, facilitating swift and secure data access. Overall, MWAA empowers organizations to focus on their data processes without the burden of infrastructure management. -
26
GlassFlow
GlassFlow
$350 per monthGlassFlow is an innovative, serverless platform for building event-driven data pipelines, specifically tailored for developers working with Python. It allows users to create real-time data workflows without the complexities associated with traditional infrastructure solutions like Kafka or Flink. Developers can simply write Python functions to specify data transformations, while GlassFlow takes care of the infrastructure, providing benefits such as automatic scaling, low latency, and efficient data retention. The platform seamlessly integrates with a variety of data sources and destinations, including Google Pub/Sub, AWS Kinesis, and OpenAI, utilizing its Python SDK and managed connectors. With a low-code interface, users can rapidly set up and deploy their data pipelines in a matter of minutes. Additionally, GlassFlow includes functionalities such as serverless function execution, real-time API connections, as well as alerting and reprocessing features. This combination of capabilities makes GlassFlow an ideal choice for Python developers looking to streamline the development and management of event-driven data pipelines, ultimately enhancing their productivity and efficiency. As the data landscape continues to evolve, GlassFlow positions itself as a pivotal tool in simplifying data processing workflows. -
27
Hazelcast
Hazelcast
In-Memory Computing Platform. Digital world is different. Microseconds are important. The world's most important organizations rely on us for powering their most sensitive applications at scale. If they meet the current requirement for immediate access, new data-enabled apps can transform your business. Hazelcast solutions can be used to complement any database and deliver results that are much faster than traditional systems of record. Hazelcast's distributed architecture ensures redundancy and continuous cluster up-time, as well as always available data to support the most demanding applications. The capacity grows with demand without compromising performance and availability. The cloud delivers the fastest in-memory data grid and third-generation high speed event processing. -
28
Upsolver
Upsolver
Upsolver makes it easy to create a governed data lake, manage, integrate, and prepare streaming data for analysis. Only use auto-generated schema on-read SQL to create pipelines. A visual IDE that makes it easy to build pipelines. Add Upserts to data lake tables. Mix streaming and large-scale batch data. Automated schema evolution and reprocessing of previous state. Automated orchestration of pipelines (no Dags). Fully-managed execution at scale Strong consistency guarantee over object storage Nearly zero maintenance overhead for analytics-ready information. Integral hygiene for data lake tables, including columnar formats, partitioning and compaction, as well as vacuuming. Low cost, 100,000 events per second (billions every day) Continuous lock-free compaction to eliminate the "small file" problem. Parquet-based tables are ideal for quick queries. -
29
Dagster
Dagster Labs
$0Dagster is the cloud-native open-source orchestrator for the whole development lifecycle, with integrated lineage and observability, a declarative programming model, and best-in-class testability. It is the platform of choice data teams responsible for the development, production, and observation of data assets. With Dagster, you can focus on running tasks, or you can identify the key assets you need to create using a declarative approach. Embrace CI/CD best practices from the get-go: build reusable components, spot data quality issues, and flag bugs early. -
30
StreamNative
StreamNative
$1,000 per monthStreamNative transforms the landscape of streaming infrastructure by combining Kafka, MQ, and various other protocols into one cohesive platform, which offers unmatched flexibility and efficiency tailored for contemporary data processing requirements. This integrated solution caters to the varied demands of streaming and messaging within microservices architectures. By delivering a holistic and intelligent approach to both messaging and streaming, StreamNative equips organizations with the tools to effectively manage the challenges and scalability of today’s complex data environment. Furthermore, Apache Pulsar’s distinctive architecture separates the message serving component from the message storage segment, creating a robust cloud-native data-streaming platform. This architecture is designed to be both scalable and elastic, allowing for quick adjustments to fluctuating event traffic and evolving business needs, and it can scale up to accommodate millions of topics, ensuring that computation and storage remain decoupled for optimal performance. Ultimately, this innovative design positions StreamNative as a leader in addressing the multifaceted requirements of modern data streaming. -
31
Astra Streaming
DataStax
Engaging applications captivate users while motivating developers to innovate. To meet the growing demands of the digital landscape, consider utilizing the DataStax Astra Streaming service platform. This cloud-native platform for messaging and event streaming is built on the robust foundation of Apache Pulsar. With Astra Streaming, developers can create streaming applications that leverage a multi-cloud, elastically scalable architecture. Powered by the advanced capabilities of Apache Pulsar, this platform offers a comprehensive solution that encompasses streaming, queuing, pub/sub, and stream processing. Astra Streaming serves as an ideal partner for Astra DB, enabling current users to construct real-time data pipelines seamlessly connected to their Astra DB instances. Additionally, the platform's flexibility allows for deployment across major public cloud providers, including AWS, GCP, and Azure, thereby preventing vendor lock-in. Ultimately, Astra Streaming empowers developers to harness the full potential of their data in real-time environments. -
32
Catalog
Coalesce
$699 per monthCastor serves as a comprehensive data catalog aimed at facilitating widespread use throughout an entire organization. It provides a holistic view of your data ecosystem, allowing you to swiftly search for information using its robust search capabilities. Transitioning to a new data framework and accessing necessary data becomes effortless. This approach transcends conventional data catalogs by integrating various data sources, thereby ensuring a unified truth. With an engaging and automated documentation process, Castor simplifies the task of establishing trust in your data. Within minutes, users can visualize column-level, cross-system data lineage. Gain an overarching perspective of your data pipelines to enhance confidence in your data integrity. This tool enables users to address data challenges, conduct impact assessments, and ensure GDPR compliance all in one platform. Additionally, it helps in optimizing performance, costs, compliance, and security associated with your data management. By utilizing our automated infrastructure monitoring system, you can ensure the ongoing health of your data stack while streamlining data governance practices. -
33
Astro by Astronomer
Astronomer
Astronomer is the driving force behind Apache Airflow, the de facto standard for expressing data flows as code. Airflow is downloaded more than 4 million times each month and is used by hundreds of thousands of teams around the world. For data teams looking to increase the availability of trusted data, Astronomer provides Astro, the modern data orchestration platform, powered by Airflow. Astro enables data engineers, data scientists, and data analysts to build, run, and observe pipelines-as-code. Founded in 2018, Astronomer is a global remote-first company with hubs in Cincinnati, New York, San Francisco, and San Jose. Customers in more than 35 countries trust Astronomer as their partner for data orchestration. -
34
IBM Event Streams is a comprehensive event streaming service based on Apache Kafka, aimed at assisting businesses in managing and reacting to real-time data flows. It offers features such as machine learning integration, high availability, and secure deployment in the cloud, empowering organizations to develop smart applications that respond to events in real time. The platform is designed to accommodate multi-cloud infrastructures, disaster recovery options, and geo-replication, making it particularly suitable for critical operational tasks. By facilitating the construction and scaling of real-time, event-driven solutions, IBM Event Streams ensures that data is processed with speed and efficiency, ultimately enhancing business agility and responsiveness. As a result, organizations can harness the power of real-time data to drive innovation and improve decision-making processes.
-
35
Spark Streaming
Apache Software Foundation
Spark Streaming extends the capabilities of Apache Spark by integrating its language-based API for stream processing, allowing you to create streaming applications in the same manner as batch applications. This powerful tool is compatible with Java, Scala, and Python. One of its key features is the automatic recovery of lost work and operator state, such as sliding windows, without requiring additional code from the user. By leveraging the Spark framework, Spark Streaming enables the reuse of the same code for batch processes, facilitates the joining of streams with historical data, and supports ad-hoc queries on the stream's state. This makes it possible to develop robust interactive applications rather than merely focusing on analytics. Spark Streaming is an integral component of Apache Spark, benefiting from regular testing and updates with each new release of Spark. Users can deploy Spark Streaming in various environments, including Spark's standalone cluster mode and other compatible cluster resource managers, and it even offers a local mode for development purposes. For production environments, Spark Streaming ensures high availability by utilizing ZooKeeper and HDFS, providing a reliable framework for real-time data processing. This combination of features makes Spark Streaming an essential tool for developers looking to harness the power of real-time analytics efficiently. -
36
Arroyo
Arroyo
Scale from zero to millions of events per second effortlessly. Arroyo is delivered as a single, compact binary, allowing for local development on MacOS or Linux, and seamless deployment to production environments using Docker or Kubernetes. As a pioneering stream processing engine, Arroyo has been specifically designed to simplify real-time processing, making it more accessible than traditional batch processing. Its architecture empowers anyone with SQL knowledge to create dependable, efficient, and accurate streaming pipelines. Data scientists and engineers can independently develop comprehensive real-time applications, models, and dashboards without needing a specialized team of streaming professionals. By employing SQL, users can transform, filter, aggregate, and join data streams, all while achieving sub-second response times. Your streaming pipelines should remain stable and not trigger alerts simply because Kubernetes has chosen to reschedule your pods. Built for modern, elastic cloud infrastructures, Arroyo supports everything from straightforward container runtimes like Fargate to complex, distributed setups on Kubernetes, ensuring versatility and robust performance across various environments. This innovative approach to stream processing significantly enhances the ability to manage data flows in real-time applications. -
37
Google Cloud Composer
Google
$0.074 per vCPU hourThe managed features of Cloud Composer, along with its compatibility with Apache Airflow, enable you to concentrate on crafting, scheduling, and overseeing your workflows rather than worrying about resource provisioning. Its seamless integration with various Google Cloud products such as BigQuery, Dataflow, Dataproc, Datastore, Cloud Storage, Pub/Sub, and AI Platform empowers users to orchestrate their data pipelines effectively. You can manage your workflows from a single orchestration tool, regardless of whether your pipeline operates on-premises, in multiple clouds, or entirely within Google Cloud. This solution simplifies your transition to the cloud and supports a hybrid data environment by allowing you to orchestrate workflows that span both on-premises setups and the public cloud. By creating workflows that interconnect data, processing, and services across different cloud platforms, you can establish a cohesive data ecosystem that enhances efficiency and collaboration. Additionally, this unified approach not only streamlines operations but also optimizes resource utilization across various environments. -
38
Yandex Data Proc
Yandex
$0.19 per hourYou determine the cluster size, node specifications, and a range of services, while Yandex Data Proc effortlessly sets up and configures Spark, Hadoop clusters, and additional components. Collaboration is enhanced through the use of Zeppelin notebooks and various web applications via a user interface proxy. You maintain complete control over your cluster with root access for every virtual machine. Moreover, you can install your own software and libraries on active clusters without needing to restart them. Yandex Data Proc employs instance groups to automatically adjust computing resources of compute subclusters in response to CPU usage metrics. Additionally, Data Proc facilitates the creation of managed Hive clusters, which helps minimize the risk of failures and data loss due to metadata issues. This service streamlines the process of constructing ETL pipelines and developing models, as well as managing other iterative operations. Furthermore, the Data Proc operator is natively integrated into Apache Airflow, allowing for seamless orchestration of data workflows. This means that users can leverage the full potential of their data processing capabilities with minimal overhead and maximum efficiency. -
39
DataKitchen
DataKitchen
You can regain control over your data pipelines and instantly deliver value without any errors. DataKitchen™, DataOps platforms automate and coordinate all people, tools and environments within your entire data analytics organization. This includes everything from orchestration, testing and monitoring, development, and deployment. You already have the tools you need. Our platform automates your multi-tool, multienvironment pipelines from data access to value delivery. Add automated tests to every node of your production and development pipelines to catch costly and embarrassing errors before they reach the end user. In minutes, you can create repeatable work environments that allow teams to make changes or experiment without interrupting production. With a click, you can instantly deploy new features to production. Your teams can be freed from the tedious, manual work that hinders innovation. -
40
E-MapReduce
Alibaba
EMR serves as a comprehensive enterprise-grade big data platform, offering cluster, job, and data management functionalities that leverage various open-source technologies, including Hadoop, Spark, Kafka, Flink, and Storm. Alibaba Cloud Elastic MapReduce (EMR) is specifically designed for big data processing within the Alibaba Cloud ecosystem. Built on Alibaba Cloud's ECS instances, EMR integrates the capabilities of open-source Apache Hadoop and Apache Spark. This platform enables users to utilize components from the Hadoop and Spark ecosystems, such as Apache Hive, Apache Kafka, Flink, Druid, and TensorFlow, for effective data analysis and processing. Users can seamlessly process data stored across multiple Alibaba Cloud storage solutions, including Object Storage Service (OSS), Log Service (SLS), and Relational Database Service (RDS). EMR also simplifies cluster creation, allowing users to establish clusters rapidly without the hassle of hardware and software configuration. Additionally, all maintenance tasks can be managed efficiently through its user-friendly web interface, making it accessible for various users regardless of their technical expertise. -
41
Openbridge
Openbridge
$149 per monthDiscover how to enhance sales growth effortlessly by utilizing automated data pipelines that connect seamlessly to data lakes or cloud storage solutions without the need for coding. This adaptable platform adheres to industry standards, enabling the integration of sales and marketing data to generate automated insights for more intelligent expansion. Eliminate the hassle and costs associated with cumbersome manual data downloads. You’ll always have a clear understanding of your expenses, only paying for the services you actually use. Empower your tools with rapid access to data that is ready for analytics. Our certified developers prioritize security by exclusively working with official APIs. You can quickly initiate data pipelines sourced from widely-used platforms. With pre-built, pre-transformed pipelines at your disposal, you can unlock crucial data from sources like Amazon Vendor Central, Amazon Seller Central, Instagram Stories, Facebook, Amazon Advertising, Google Ads, and more. The processes for data ingestion and transformation require no coding, allowing teams to swiftly and affordably harness the full potential of their data. Your information is consistently safeguarded and securely stored in a reliable, customer-controlled data destination such as Databricks or Amazon Redshift, ensuring peace of mind as you manage your data assets. This streamlined approach not only saves time but also enhances overall operational efficiency. -
42
Datavolo
Datavolo
$36,000 per yearGather all your unstructured data to meet your LLM requirements effectively. Datavolo transforms single-use, point-to-point coding into rapid, adaptable, reusable pipelines, allowing you to concentrate on what truly matters—producing exceptional results. As a dataflow infrastructure, Datavolo provides you with a significant competitive advantage. Enjoy swift, unrestricted access to all your data, including the unstructured files essential for LLMs, thereby enhancing your generative AI capabilities. Experience pipelines that expand alongside you, set up in minutes instead of days, without the need for custom coding. You can easily configure sources and destinations at any time, while trust in your data is ensured, as lineage is incorporated into each pipeline. Move beyond single-use pipelines and costly configurations. Leverage your unstructured data to drive AI innovation with Datavolo, which is supported by Apache NiFi and specifically designed for handling unstructured data. With a lifetime of experience, our founders are dedicated to helping organizations maximize their data's potential. This commitment not only empowers businesses but also fosters a culture of data-driven decision-making. -
43
Kestra
Kestra
Kestra is a free, open-source orchestrator based on events that simplifies data operations while improving collaboration between engineers and users. Kestra brings Infrastructure as Code to data pipelines. This allows you to build reliable workflows with confidence. The declarative YAML interface allows anyone who wants to benefit from analytics to participate in the creation of the data pipeline. The UI automatically updates the YAML definition whenever you make changes to a work flow via the UI or an API call. The orchestration logic can be defined in code declaratively, even if certain workflow components are modified. -
44
Data Flow Manager
Ksolves
Data Flow Manager is an on-premise tool designed to deploy & promote Apache NiFi data flows within minutes - no need for NiFi UI & controller services. Run unlimited NiFi data flows with pay-per-node pricing—no cloud, no CPU limits. Automate everything from NiFi flow deployment to promotion and scheduling. Monitor performance, enforce RBAC, and log every action. DFM even helps you build better NiFi flows with an AI-powered NiFi data flow creation assistant. Backed by 24x7 expert NiFi support and 99.99% uptime, DFM delivers total control and security. -
45
Pathway
Pathway
Scalable Python framework designed to build real-time intelligent applications, data pipelines, and integrate AI/ML models