Vertex AI
Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case.
Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
Learn more
Digital WarRoom
DWR eDiscovery allows legal professionals to review, process, and produce documents that could be relevant to litigation.
Our Software and hosted Subscriptions offers a wide range of document review tools, including AI search, keyword search, keyword highlight, metadata filtering and marking documents. It also has privilege log, redactions and analysis tools to help users better understand their document corpus. These features can all be done by the user themselves, so they can do the standard eDiscovery tasks without consulting.
DWR eDiscovery offers subscriptions to both hosted and on-prem eDiscovery. DWR Pro desktop software can be downloaded to your computer or server. DWR Pro costs $1995per concurrent use license/year. Cloud subscriptions are charged per-GB for hosting and there are no hidden fees. The entry-level Single Matter subscription costs $10/GB/Month and has a minimum of $250 per month. Private clouds allow multiple matters and multiple users for no more than $4/GB/month moving quickly to $1/GB/month.
Learn more
Pinecone Rerank v0
Pinecone Rerank V0 is a cross-encoder model specifically designed to enhance precision in reranking tasks, thereby improving enterprise search and retrieval-augmented generation (RAG) systems. This model processes both queries and documents simultaneously, enabling it to assess fine-grained relevance and assign a relevance score ranging from 0 to 1 for each query-document pair. With a maximum context length of 512 tokens, it ensures that the quality of ranking is maintained. In evaluations based on the BEIR benchmark, Pinecone Rerank V0 stood out by achieving the highest average NDCG@10, surpassing other competing models in 6 out of 12 datasets. Notably, it achieved an impressive 60% increase in performance on the Fever dataset when compared to Google Semantic Ranker, along with over 40% improvement on the Climate-Fever dataset against alternatives like cohere-v3-multilingual and voyageai-rerank-2. Accessible via Pinecone Inference, this model is currently available to all users in a public preview, allowing for broader experimentation and feedback. Its design reflects an ongoing commitment to innovation in search technology, making it a valuable tool for organizations seeking to enhance their information retrieval capabilities.
Learn more
Asimov
Asimov serves as a fundamental platform for AI-search and vector-search, allowing developers to upload various content sources such as documents and logs, which it then automatically chunks and embeds, making them accessible through a single API for enhanced semantic search, filtering, and relevance for AI applications. By streamlining the management of vector databases, embedding pipelines, and re-ranking systems, it simplifies the process of ingestion, metadata parameterization, usage monitoring, and retrieval within a cohesive framework. With features that support content addition through a REST API and the capability to conduct semantic searches with tailored filtering options, Asimov empowers teams to create extensive search functionalities with minimal infrastructure requirements. The platform efficiently manages metadata, automates chunking, handles embedding, and facilitates storage solutions like MongoDB, while also offering user-friendly tools such as a dashboard, usage analytics, and smooth integration capabilities. Furthermore, its all-in-one approach eliminates the complexities of traditional search systems, making it an indispensable tool for developers aiming to enhance their applications with advanced search capabilities.
Learn more