Vertex AI
Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case.
Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
Learn more
Windsurf Editor
Windsurf is a cutting-edge IDE designed for developers to maintain focus and productivity through AI-driven assistance. At the heart of the platform is Cascade, an intelligent agent that not only fixes bugs and errors but also anticipates potential issues before they arise. With built-in features for real-time code previews, automatic linting, and seamless integrations with popular tools like GitHub and Slack, Windsurf streamlines the development process. Developers can also benefit from memory tracking, which helps Cascade recall past work, and smart suggestions that enhance code optimization. Windsurf’s unique capabilities ensure that developers can work faster and smarter, reducing onboarding time and accelerating project delivery.
Learn more
MedGemma
MedGemma is an innovative suite of Gemma 3 variants specifically designed to excel in the analysis of medical texts and images. This resource empowers developers to expedite the creation of AI applications focused on healthcare. Currently, MedGemma offers two distinct variants: a multimodal version with 4 billion parameters and a text-only version featuring 27 billion parameters. The 4B version employs a SigLIP image encoder, which has been meticulously pre-trained on a wealth of anonymized medical data, such as chest X-rays, dermatological images, ophthalmological images, and histopathological slides. Complementing this, its language model component is trained on a wide array of medical datasets, including radiological images and various pathology visuals. MedGemma 4B can be accessed in both pre-trained versions, denoted by the suffix -pt, and instruction-tuned versions, marked by the suffix -it. For most applications, the instruction-tuned variant serves as the optimal foundation to build upon, making it particularly valuable for developers. Overall, MedGemma represents a significant advancement in the integration of AI within the medical field.
Learn more
Olmo 3
Olmo 3 represents a comprehensive family of open models featuring variations with 7 billion and 32 billion parameters, offering exceptional capabilities in base performance, reasoning, instruction, and reinforcement learning, while also providing transparency throughout the model development process, which includes access to raw training datasets, intermediate checkpoints, training scripts, extended context support (with a window of 65,536 tokens), and provenance tools. The foundation of these models is built upon the Dolma 3 dataset, which comprises approximately 9 trillion tokens and utilizes a careful blend of web content, scientific papers, programming code, and lengthy documents; this thorough pre-training, mid-training, and long-context approach culminates in base models that undergo post-training enhancements through supervised fine-tuning, preference optimization, and reinforcement learning with accountable rewards, resulting in the creation of the Think and Instruct variants. Notably, the 32 billion Think model has been recognized as the most powerful fully open reasoning model to date, demonstrating performance that closely rivals that of proprietary counterparts in areas such as mathematics, programming, and intricate reasoning tasks, thereby marking a significant advancement in open model development. This innovation underscores the potential for open-source models to compete with traditional, closed systems in various complex applications.
Learn more