Azore CFD
Azore is software for computational fluid dynamics. It analyzes fluid flow and heat transfers. CFD allows engineers and scientists to analyze a wide range of fluid mechanics problems, thermal and chemical problems numerically using a computer. Azore can simulate a wide range of fluid dynamics situations, including air, liquids, gases, and particulate-laden flow. Azore is commonly used to model the flow of liquids through a piping or evaluate water velocity profiles around submerged items. Azore can also analyze the flow of gases or air, such as simulating ambient air velocity profiles as they pass around buildings, or investigating the flow, heat transfer, and mechanical equipment inside a room. Azore CFD is able to simulate virtually any incompressible fluid flow model. This includes problems involving conjugate heat transfer, species transport, and steady-state or transient fluid flows.
Learn more
Innoslate
SPEC Innovations’ leading model-based systems engineering solution is designed to help your team minimize time-to-market, reduce costs, and mitigate risks, even with the most complex systems. Available as both a cloud-based and on-premise application, it offers an intuitive graphical user interface accessible through any modern web browser.
Innoslate's comprehensive lifecycle capabilities include:
• Requirements Management
• Document Management
• System Modeling
• Discrete Event Simulation
• Monte Carlo Simulation
• DoDAF Models and Views
• Database Management
• Test Management with detailed reports, status updates, results, and more
• Real-Time Collaboration
And much more.
Learn more
DIGIMU
DIGIMU® creates digital polycrystalline microstructures that accurately reflect the material's heterogeneities, ensuring compliance with the intricate topological features of the microstructure. The boundary conditions applied to the Representative Elementary Volume (REV) mimic the experiences of a material point at the macroscopic level, particularly during the thermomechanical cycles relevant to that specific point. Utilizing a Finite Element formulation, the software simulates the various physical phenomena occurring in metal forming processes, such as recrystallization, grain growth, and Zener pinning caused by second phase particles. To enhance digital accuracy and minimize computation times, DIGIMU® employs advanced automated anisotropic meshing and remeshing adaptation technology, which allows for a detailed representation of grain boundaries while optimizing the number of elements used. This innovative approach not only streamlines the computational process but also improves the reliability of the simulations, making it a powerful tool for material scientists.
Learn more
MSC Nastran
MSC Nastran is a versatile application for multidisciplinary structural analysis, allowing engineers to conduct various assessments, including static, dynamic, and thermal analyses, in both linear and nonlinear contexts. This software integrates automated structural optimization and award-winning fatigue analysis technologies, all powered by advanced computing capabilities. Engineers leverage MSC Nastran to guarantee that structural systems possess the required strength, stiffness, and longevity to prevent failures such as excessive stresses, resonance, buckling, or harmful deformations that could jeopardize structural integrity and safety. Additionally, MSC Nastran serves to enhance the cost-effectiveness and comfort of passenger experiences in structural designs. By optimizing performance in existing frameworks or creating distinctive product features, this tool provides a competitive edge within the industry. Furthermore, it assists in addressing potential structural problems that might arise during a product's operational life, thereby minimizing downtime and reducing associated costs. Ultimately, MSC Nastran empowers engineers to innovate and refine their designs effectively.
Learn more