Best Baidu Palo Alternatives in 2025

Find the top alternatives to Baidu Palo currently available. Compare ratings, reviews, pricing, and features of Baidu Palo alternatives in 2025. Slashdot lists the best Baidu Palo alternatives on the market that offer competing products that are similar to Baidu Palo. Sort through Baidu Palo alternatives below to make the best choice for your needs

  • 1
    StarTree Reviews
    See Software
    Learn More
    Compare Both
    StarTree Cloud is a fully-managed real-time analytics platform designed for OLAP at massive speed and scale for user-facing applications. Powered by Apache Pinot, StarTree Cloud provides enterprise-grade reliability and advanced capabilities such as tiered storage, scalable upserts, plus additional indexes and connectors. It integrates seamlessly with transactional databases and event streaming platforms, ingesting data at millions of events per second and indexing it for lightning-fast query responses. StarTree Cloud is available on your favorite public cloud or for private SaaS deployment. StarTree Cloud includes StarTree Data Manager, which allows you to ingest data from both real-time sources such as Amazon Kinesis, Apache Kafka, Apache Pulsar, or Redpanda, as well as batch data sources such as data warehouses like Snowflake, Delta Lake or Google BigQuery, or object stores like Amazon S3, Apache Flink, Apache Hadoop, or Apache Spark. StarTree ThirdEye is an add-on anomaly detection system running on top of StarTree Cloud that observes your business-critical metrics, alerting you and allowing you to perform root-cause analysis — all in real-time.
  • 2
    AnalyticsCreator Reviews
    See Software
    Learn More
    Compare Both
    Accelerate your data journey with AnalyticsCreator. Automate the design, development, and deployment of modern data architectures, including dimensional models, data marts, and data vaults or a combination of modeling techniques. Seamlessly integrate with leading platforms like Microsoft Fabric, Power BI, Snowflake, Tableau, and Azure Synapse and more. Experience streamlined development with automated documentation, lineage tracking, and schema evolution. Our intelligent metadata engine empowers rapid prototyping and deployment of analytics and data solutions. Reduce time-consuming manual tasks, allowing you to focus on data-driven insights and business outcomes. AnalyticsCreator supports agile methodologies and modern data engineering workflows, including CI/CD. Let AnalyticsCreator handle the complexities of data modeling and transformation, enabling you to unlock the full potential of your data
  • 3
    Amazon Redshift Reviews
    Amazon Redshift is preferred by more customers than any other cloud data storage. Redshift powers analytic workloads for Fortune 500 companies and startups, as well as everything in between. Redshift has helped Lyft grow from a startup to multi-billion-dollar enterprises. It's easier than any other data warehouse to gain new insights from all of your data. Redshift allows you to query petabytes (or more) of structured and semi-structured information across your operational database, data warehouse, and data lake using standard SQL. Redshift allows you to save your queries to your S3 database using open formats such as Apache Parquet. This allows you to further analyze other analytics services like Amazon EMR and Amazon Athena. Redshift is the fastest cloud data warehouse in the world and it gets faster each year. The new RA3 instances can be used for performance-intensive workloads to achieve up to 3x the performance compared to any cloud data warehouse.
  • 4
    Google Cloud BigQuery Reviews
    ANSI SQL allows you to analyze petabytes worth of data at lightning-fast speeds with no operational overhead. Analytics at scale with 26%-34% less three-year TCO than cloud-based data warehouse alternatives. You can unleash your insights with a trusted platform that is more secure and scales with you. Multi-cloud analytics solutions that allow you to gain insights from all types of data. You can query streaming data in real-time and get the most current information about all your business processes. Machine learning is built-in and allows you to predict business outcomes quickly without having to move data. With just a few clicks, you can securely access and share the analytical insights within your organization. Easy creation of stunning dashboards and reports using popular business intelligence tools right out of the box. BigQuery's strong security, governance, and reliability controls ensure high availability and a 99.9% uptime SLA. Encrypt your data by default and with customer-managed encryption keys
  • 5
    VeloDB Reviews
    VeloDB, powered by Apache Doris is a modern database for real-time analytics at scale. In seconds, micro-batch data can be ingested using a push-based system. Storage engine with upserts, appends and pre-aggregations in real-time. Unmatched performance in real-time data service and interactive ad hoc queries. Not only structured data, but also semi-structured. Not only real-time analytics, but also batch processing. Not only run queries against internal data, but also work as an federated query engine to access external databases and data lakes. Distributed design to support linear scalability. Resource usage can be adjusted flexibly to meet workload requirements, whether on-premise or cloud deployment, separation or integration. Apache Doris is fully compatible and built on this open source software. Support MySQL functions, protocol, and SQL to allow easy integration with other tools.
  • 6
    Dremio Reviews
    Dremio provides lightning-fast queries as well as a self-service semantic layer directly to your data lake storage. No data moving to proprietary data warehouses, and no cubes, aggregation tables, or extracts. Data architects have flexibility and control, while data consumers have self-service. Apache Arrow and Dremio technologies such as Data Reflections, Columnar Cloud Cache(C3), and Predictive Pipelining combine to make it easy to query your data lake storage. An abstraction layer allows IT to apply security and business meaning while allowing analysts and data scientists access data to explore it and create new virtual datasets. Dremio's semantic layers is an integrated searchable catalog that indexes all your metadata so business users can make sense of your data. The semantic layer is made up of virtual datasets and spaces, which are all searchable and indexed.
  • 7
    Trino Reviews
    Trino is an engine that runs at incredible speeds. Fast-distributed SQL engine for big data analytics. Helps you explore the data universe. Trino is an extremely parallel and distributed query-engine, which is built from scratch for efficient, low latency analytics. Trino is used by the largest organizations to query data lakes with exabytes of data and massive data warehouses. Supports a wide range of use cases including interactive ad-hoc analysis, large batch queries that take hours to complete, and high volume apps that execute sub-second queries. Trino is a ANSI SQL query engine that works with BI Tools such as R Tableau Power BI Superset and many others. You can natively search data in Hadoop S3, Cassandra MySQL and many other systems without having to use complex, slow and error-prone copying processes. Access data from multiple systems in a single query.
  • 8
    Tabular Reviews

    Tabular

    Tabular

    $100 per month
    Tabular is a table store that allows you to create an open table. It was created by the Apache Iceberg creators. Connect multiple computing frameworks and engines. Reduce query time and costs up to 50%. Centralize enforcement of RBAC policies. Connect any query engine, framework, or tool, including Athena BigQuery, Snowflake Databricks Trino Spark Python, Snowflake Redshift, Snowflake Databricks and Redshift. Smart compaction, data clustering and other automated services reduce storage costs by up to 50% and query times. Unify data access in the database or table. RBAC controls are easy to manage, enforce consistently, and audit. Centralize your security at the table. Tabular is easy-to-use and has RBAC, high-powered performance, and high ingestion under the hood. Tabular allows you to choose from multiple "best-of-breed" compute engines, based on their strengths. Assign privileges to the data warehouse database or table level.
  • 9
    Apache Kylin Reviews

    Apache Kylin

    Apache Software Foundation

    Apache Kylin™, an open-source distributed Analytical Data Warehouse (Big Data), was created to provide OLAP (Online Analytical Processing), in this big data era. Kylin can query at near constant speed regardless of increasing data volumes by renovating the multi-dimensional cube, precalculation technology on Hadoop or Spark, and thereby achieving almost constant query speed. Kylin reduces query latency from minutes down to a fraction of a second, bringing online analytics back into big data. Kylin can analyze more than 10+ billion rows in less time than a second. No more waiting for reports to make critical decisions. Kylin connects Hadoop data to BI tools such as Tableau, PowerBI/Excel and MSTR. This makes Hadoop BI faster than ever. Kylin is an Analytical Data Warehouse and offers ANSI SQL on Hadoop/Spark. It also supports most ANSI SQL queries functions. Because of the low resource consumption for each query, Kylin can support thousands upon thousands of interactive queries simultaneously.
  • 10
    IBM Db2 Big SQL Reviews
    A hybrid SQL-onHadoop engine that delivers advanced, security-rich data queries across enterprise big data sources including Hadoop object storage and data warehouses. IBM Db2 Big SQL, an enterprise-grade, hybrid ANSI compliant SQL-on-Hadoop engine that delivers massively parallel processing and advanced data query, is available. Db2 Big SQL allows you to connect to multiple sources, such as Hadoop HDFS and WebHDFS. RDMS, NoSQL database, object stores, and RDMS. You can benefit from low latency, high speed, data security, SQL compatibility and federation capabilities to perform complex and ad-hoc queries. Db2 Big SQL now comes in two versions. It can be integrated with Cloudera Data Platform or accessed as a cloud native service on the IBM Cloud Pak®. for Data platform. Access, analyze, and perform queries on real-time and batch data from multiple sources, including Hadoop, object stores, and data warehouses.
  • 11
    LlamaIndex Reviews
    LlamaIndex, a "dataframework", is designed to help you create LLM apps. Connect semi-structured API data like Slack or Salesforce. LlamaIndex provides a flexible and simple data framework to connect custom data sources with large language models. LlamaIndex is a powerful tool to enhance your LLM applications. Connect your existing data formats and sources (APIs, PDFs, documents, SQL etc.). Use with a large-scale language model application. Store and index data for different uses. Integrate downstream vector stores and database providers. LlamaIndex is a query interface which accepts any input prompts over your data, and returns a knowledge augmented response. Connect unstructured data sources, such as PDFs, raw text files and images. Integrate structured data sources such as Excel, SQL etc. It provides ways to structure data (indices, charts) so that it can be used with LLMs.
  • 12
    ClickHouse Reviews
    ClickHouse is an open-source OLAP database management software that is fast and easy to use. It is column-oriented, and can generate real-time analytical reports by using SQL queries. ClickHouse's performance is superior to comparable column-oriented database management software currently on the market. It processes hundreds of millions of rows to more than a million and tens if not thousands of gigabytes per second. ClickHouse makes use of all hardware available to process every query as quickly as possible. Peak processing speed for a single query is more than 2 Terabytes per Second (after decompression, only utilized columns). To reduce latency, reads in distributed setups are automatically balanced between healthy replicas. ClickHouse supports multimaster asynchronous replication, and can be deployed across multiple datacenters. Each node is equal, which prevents single points of failure.
  • 13
    PuppyGraph Reviews
    PuppyGraph allows you to query multiple data stores in a single graph model. Graph databases can be expensive, require months of setup, and require a dedicated team. Traditional graph databases struggle to handle data beyond 100GB and can take hours to run queries with multiple hops. A separate graph database complicates architecture with fragile ETLs, and increases your total cost ownership (TCO). Connect to any data source, anywhere. Cross-cloud and cross region graph analytics. No ETLs are required, nor is data replication. PuppyGraph allows you to query data as a graph directly from your data lakes and warehouses. This eliminates the need for time-consuming ETL processes that are required with a traditional graph databases setup. No more data delays or failed ETL processes. PuppyGraph eliminates graph scaling issues by separating computation from storage.
  • 14
    QuasarDB Reviews
    QuasarDB is Quasar's brain. It is a high-performance distributed, column-oriented, timeseries database management software system that delivers real-time data for petascale use cases. You can save up to 20X on your disk usage Quasardb compression and ingestion are unmatched. Feature extraction can be performed up to 10,000 times faster. QuasarDB is able to extract features from raw data in real-time thanks to a combination of a builtin map/reduce engine, an aggregate engine that leverages SIMD from modern processors, and stochastic indices that consume virtually no disk space.
  • 15
    Amazon Timestream Reviews
    Amazon Timestream is a fast, scalable and serverless time series data service for IoT/operational applications. It makes it possible to store and analyze trillions per day up to 1000 times faster than traditional relational databases and at as low as 1/10th of the cost. Amazon Timestream helps you save time and money when managing the lifecycles of time series data. It stores recent data in memory and moves historical data to a cost-optimized storage tier according to user defined policies. Amazon Timestream's purpose-built query tool allows you to access and analyze both recent and historic data simultaneously, without having to specify in the query whether the data is in the in-memory tier or the cost-optimized. Amazon Timestream's built-in time series analytics functions allow you to identify trends and patterns within your data in real-time.
  • 16
    StarRocks Reviews
    StarRocks offers at least 300% more performance than other popular solutions, whether you're using a single or multiple tables. With a rich set connectors, you can ingest real-time data into StarRocks for the latest insights. A query engine that adapts your use cases. StarRocks allows you to scale your analytics easily without moving your data or rewriting SQL. StarRocks allows a rapid journey between data and insight. StarRocks is unmatched in performance and offers a unified OLAP system that covers the most common data analytics scenarios. StarRocks offers at least 300% faster performance than other popular solutions, whether you are working with one table or many. StarRocks' built-in memory-and-disk-based caching framework is specifically designed to minimize the I/O overhead of fetching data from external storage to accelerate query performance.
  • 17
    QuerySurge Reviews
    Top Pick
    QuerySurge is the smart Data Testing solution that automates the data validation and ETL testing of Big Data, Data Warehouses, Business Intelligence Reports and Enterprise Applications with full DevOps functionality for continuous testing. Use Cases - Data Warehouse & ETL Testing - Big Data (Hadoop & NoSQL) Testing - DevOps for Data / Continuous Testing - Data Migration Testing - BI Report Testing - Enterprise Application/ERP Testing Features Supported Technologies - 200+ data stores are supported QuerySurge Projects - multi-project support Data Analytics Dashboard - provides insight into your data Query Wizard - no programming required Design Library - take total control of your custom test desig BI Tester - automated business report testing Scheduling - run now, periodically or at a set time Run Dashboard - analyze test runs in real-time Reports - 100s of reports API - full RESTful API DevOps for Data - integrates into your CI/CD pipeline Test Management Integration QuerySurge will help you: - Continuously detect data issues in the delivery pipeline - Dramatically increase data validation coverage - Leverage analytics to optimize your critical data - Improve your data quality at speed
  • 18
    SSuite MonoBase Database Reviews
    You can create flat or relational databases with unlimited fields, tables, and rows. A custom report builder is included. Create custom reports by connecting to compatible ODBC databases. You can create your own databases. Here are some highlights: Filter tables instantly - Ultra simple graphical-user-interface - One-click table and data form creation - You can open up to 5 databases simultaneously Export your data to comma-separated files - Create custom reports to all your databases - A complete helpfile for creating database reports - You can print tables and queries directly from your data grid - Supports any SQL standard your ODBC compatible databases require For best performance and user experience, please install and run this database app with full administrator rights. Requirements: . 1024x768 Display Size . Windows 98 / XP / Windows 8 / Windows 10 - 32bit or 64bit No Java or DotNet are required. Green Energy Software. One step at a time, saving the planet
  • 19
    Apache Druid Reviews
    Apache Druid, an open-source distributed data store, is Apache Druid. Druid's core design blends ideas from data warehouses and timeseries databases to create a high-performance real-time analytics database that can be used for a wide range of purposes. Druid combines key characteristics from each of these systems into its ingestion, storage format, querying, and core architecture. Druid compresses and stores each column separately, so it only needs to read the ones that are needed for a specific query. This allows for fast scans, ranking, groupBys, and groupBys. Druid creates indexes that are inverted for string values to allow for fast search and filter. Connectors out-of-the box for Apache Kafka and HDFS, AWS S3, stream processors, and many more. Druid intelligently divides data based upon time. Time-based queries are much faster than traditional databases. Druid automatically balances servers as you add or remove servers. Fault-tolerant architecture allows for server failures to be avoided.
  • 20
    Apache Doris Reviews

    Apache Doris

    The Apache Software Foundation

    Free
    Apache Doris is an advanced data warehouse for real time analytics. It delivers lightning fast analytics on real-time, large-scale data. Ingestion of micro-batch data and streaming data within a second. Storage engine with upserts, appends and pre-aggregations in real-time. Optimize for high-concurrency, high-throughput queries using columnar storage engine, cost-based query optimizer, and vectorized execution engine. Federated querying for data lakes like Hive, Iceberg, and Hudi and databases like MySQL and PostgreSQL. Compound data types, such as Arrays, Maps and JSON. Variant data types to support auto datatype inference for JSON data. NGram bloomfilter for text search. Distributed design for linear scaling. Workload isolation, tiered storage and efficient resource management. Supports shared-nothing as well as the separation of storage from compute.
  • 21
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform enables your entire organization to utilize data and AI. It is built on a lakehouse that provides an open, unified platform for all data and governance. It's powered by a Data Intelligence Engine, which understands the uniqueness in your data. Data and AI companies will win in every industry. Databricks can help you achieve your data and AI goals faster and easier. Databricks combines the benefits of a lakehouse with generative AI to power a Data Intelligence Engine which understands the unique semantics in your data. The Databricks Platform can then optimize performance and manage infrastructure according to the unique needs of your business. The Data Intelligence Engine speaks your organization's native language, making it easy to search for and discover new data. It is just like asking a colleague a question.
  • 22
    IBM Netezza Performance Server Reviews
    100% compatible with Netezza Upgrade via a single command-line line. Available on premises, in the cloud, or hybrid. IBM®, Netezza®, Performance Server for IBM Cloud Pack® Data is an advanced data warehouse platform and analytics platform that is available on premises or on the cloud. This next generation of Netezza includes enhancements to the in-database analytics capabilities. You can do data science and machinelearning with data volumes scaling to the petabytes. Fast failure recovery and failure detection. Upgrade existing systems with a single command-line command. Ability to query multiple systems simultaneously. Select the nearest availability zone or data center, select the required number of compute units, and then go. IBM®, Netezza®, Performance Server for IBM Cloud® for Data is available via Amazon Web Services, Microsoft Azure, and IBM Cloud®. Netezza can be deployed on a private cloud using IBM Cloud Pak Data System.
  • 23
    DataLakeHouse.io Reviews
    DataLakeHouse.io Data Sync allows users to replicate and synchronize data from operational systems (on-premises and cloud-based SaaS), into destinations of their choice, primarily Cloud Data Warehouses. DLH.io is a tool for marketing teams, but also for any data team in any size organization. It enables business cases to build single source of truth data repositories such as dimensional warehouses, data vaults 2.0, and machine learning workloads. Use cases include technical and functional examples, including: ELT and ETL, Data Warehouses, Pipelines, Analytics, AI & Machine Learning and Data, Marketing and Sales, Retail and FinTech, Restaurants, Manufacturing, Public Sector and more. DataLakeHouse.io has a mission: to orchestrate the data of every organization, especially those who wish to become data-driven or continue their data-driven strategy journey. DataLakeHouse.io, aka DLH.io, allows hundreds of companies manage their cloud data warehousing solutions.
  • 24
    Snowflake Reviews
    Your cloud data platform. Access to any data you need with unlimited scalability. All your data is available to you, with the near-infinite performance and concurrency required by your organization. You can seamlessly share and consume shared data across your organization to collaborate and solve your most difficult business problems. You can increase productivity and reduce time to value by collaborating with data professionals to quickly deliver integrated data solutions from any location in your organization. Our technology partners and system integrators can help you deploy Snowflake to your success, no matter if you are moving data into Snowflake.
  • 25
    Databend Reviews
    Databend is an agile, cloud-native, modern data warehouse that delivers high-performance analytics at a low cost for large-scale data processing. It has an elastic architecture which scales dynamically in order to meet the needs of different workloads. This ensures efficient resource utilization and lower operating costs. Databend, written in Rust offers exceptional performance thanks to features such as vectorized query execution, columnar storage and optimized data retrieval and processing speed. Its cloud-first approach allows for seamless integration with cloud platforms and emphasizes reliability, consistency of data, and fault tolerance. Databend is a free and open-source solution that makes it an accessible and flexible choice for data teams who want to handle big data analysis in the cloud.
  • 26
    Weld Reviews

    Weld

    Weld

    €750 per month
    Your data models can be created, edited, and organized. You don't need another data tool to manage your data models. Weld allows you to create and manage them. It is packed with features that make it easy to create your data models: smart autocomplete, code folding and error highlighting, audit logs and version control, collaboration, and version control. We use the same text editor that VS Code - it is fast, powerful, and easy to read. Your queries are organized in a searchable and easily accessible library. Audit logs allow you to see when and by whom the query was last updated. Weld Model allows you to materialize models as views, tables, incremental tables, and views. You can also create custom materializations of your design. With the help of a dedicated team, you can manage all your data operations from one platform.
  • 27
    Onehouse Reviews
    The only fully-managed cloud data lakehouse that can ingest data from all of your sources in minutes, and support all of your query engines on a large scale. All for a fraction the cost. With the ease of fully managed pipelines, you can ingest data from databases and event streams in near-real-time. You can query your data using any engine and support all of your use cases, including BI, AI/ML, real-time analytics and AI/ML. Simple usage-based pricing allows you to cut your costs by up to 50% compared with cloud data warehouses and ETL software. With a fully-managed, highly optimized cloud service, you can deploy in minutes and without any engineering overhead. Unify all your data into a single source and eliminate the need for data to be copied between data lakes and warehouses. Apache Hudi, Apache Iceberg and Delta Lake all offer omnidirectional interoperability, allowing you to choose the best table format for your needs. Configure managed pipelines quickly for database CDC and stream ingestion.
  • 28
    DuckDB Reviews
    Processing and storage of tabular datasets, e.g. CSV or Parquet files. Large result set transfer to client. Large client/server installations are required for central enterprise data warehousing. Multiple concurrent processes can be used to write to a single database. DuckDB is a relational database management software (RDBMS). It is a system to manage data stored in relational databases. A relation is basically a mathematical term for a particular table. Each table is a named collection. Each row in a table has the same number of named columns. Each column is of a particular data type. Schemas are used to store tables, and a collection can be accessed to access the entire database.
  • 29
    Apache Hive Reviews
    Apache Hive™, a data warehouse software, facilitates the reading, writing and management of large datasets that are stored in distributed storage using SQL. Structure can be projected onto existing data. Hive provides a command line tool and a JDBC driver to allow users to connect to it. Apache Hive is an Apache Software Foundation open-source project. It was previously a subproject to Apache® Hadoop®, but it has now become a top-level project. We encourage you to read about the project and share your knowledge. To execute traditional SQL queries, you must use the MapReduce Java API. Hive provides the SQL abstraction needed to integrate SQL-like query (HiveQL), into the underlying Java. This is in addition to the Java API that implements queries.
  • 30
    Axibase Time Series Database Reviews
    Parallel query engine with symbol- and time-indexed data access. Extended SQL syntax with advanced filtering, aggregations and more. Consolidate all quotes, trades and snapshots in one place. Strategy backtesting using high-frequency data. Quantitative and market microstructure analysis. Granular transaction cost analysis and rollup report. Market surveillance and anomaly detection. Non-transparent ETF/ETN decomposition. FAST, SBE and proprietary protocols. Plain text protocol. Consolidated and direct feeds. Built-in latency monitoring tools. End-of-day archives. ETL from retail and institutional financial data platforms. Parallel SQL engine with syntax extensions. Advanced filtering via trading session, auction stage, and index composition. Optimized aggregates to OHLCV and VWAP calculations. Interactive SQL console with auto completion. API endpoint for programmatic integrtion. Scheduled SQL reporting via email, file, or web delivery. JDBC and ODBC drivers.
  • 31
    Amazon Athena Reviews
    Amazon Athena allows you to easily analyze data in Amazon S3 with standard SQL. Athena is serverless so there is no infrastructure to maintain and you only pay for the queries you run. Athena is simple to use. Simply point to your data in Amazon S3 and define the schema. Then, you can query standard SQL. Most results are delivered in a matter of seconds. Athena makes it easy to prepare your data for analysis without the need for complicated ETL jobs. Anyone with SQL skills can quickly analyze large-scale data sets. Athena integrates with AWS Glue Data Catalog out-of-the box. This allows you to create a unified metadata repositorie across multiple services, crawl data sources and discover schemas. You can also populate your Catalog by adding new and modified partition and table definitions. Schema versioning is possible.
  • 32
    Presto Reviews
    Presto is an open-source distributed SQL query engine that allows interactive analytic queries against any data source, from gigabytes up to petabytes.
  • 33
    Timeplus Reviews

    Timeplus

    Timeplus

    $199 per month
    Timeplus is an easy-to-use, powerful and cost-effective platform for stream processing. All in one binary, easily deployable anywhere. We help data teams in organizations of any size and industry process streaming data and historical data quickly, intuitively and efficiently. Lightweight, one binary, no dependencies. Streaming analytics and historical functionality from end-to-end. 1/10 of the cost of comparable open source frameworks Transform real-time data from the market and transactions into real-time insight. Monitor financial data using append-only streams or key-value streams. Implement real-time feature pipelines using Timeplus. All infrastructure logs, metrics and traces are consolidated on one platform. In Timeplus we support a variety of data sources through our web console UI. You can also push data using REST API or create external streams, without copying data to Timeplus.
  • 34
    Apache Impala Reviews
    Impala offers low latency, high concurrency, and a wide range of storage options, including Iceberg and open data formats. Impala scales linearly in multitenant environments. Impala integrates native Hadoop security, Kerberos authentication, and the Ranger module to ensure that the correct users and applications have access to the right data. Utilize the same file and data formats and metadata, security, and resource management frameworks as your Hadoop deployment, with no redundant infrastructure or data conversion/duplication. Impala uses the same metadata driver and ODBC driver as Apache Hive. Impala, like Hive, supports SQL. You don't need to reinvent the wheel. Impala allows more users to interact with data, whether they are using SQL queries or BI apps, through a single repository. Metadata is also stored from the source of the data until it has been analyzed.
  • 35
    ksqlDB Reviews
    Now that your data has been in motion, it is time to make sense. Stream processing allows you to extract instant insights from your data streams but it can be difficult to set up the infrastructure. Confluent created ksqlDB to support stream processing applications. Continuously processing streams of data from your business will make your data actionable. The intuitive syntax of ksqlDB allows you to quickly access and augment Kafka data, allowing development teams to create innovative customer experiences and meet data-driven operational requirements. ksqlDB is a single solution that allows you to collect streams of data, enrich them and then serve queries on new derived streams or tables. This means that there is less infrastructure to manage, scale, secure, and deploy. You can now focus on the important things -- innovation -- with fewer moving parts in your data architecture.
  • 36
    PySpark Reviews
    PySpark is a Python interface for Apache Spark. It allows you to create Spark applications using Python APIs. Additionally, it provides the PySpark shell that allows you to interactively analyze your data in a distributed environment. PySpark supports Spark's most popular features, including Spark SQL, DataFrame and Streaming. Spark SQL is a Spark module that allows structured data processing. It can be used as a distributed SQL query engine and a programming abstraction called DataFrame. The streaming feature in Apache Spark, which runs on top of Spark allows for powerful interactive and analytic applications across streaming and historical data. It also inherits Spark's ease-of-use and fault tolerance characteristics.
  • 37
    MaxCompute Reviews
    MaxCompute, formerly known as ODPS, is a multi-tenant, general-purpose data processing platform that can be used for large-scale data warehousing. MaxCompute supports a variety of data importing options and distributed computing models. This allows users to query large datasets efficiently, reduce production costs, and ensure data safety. Supports EB-level data storage. Supports SQL, MapReduce and Graph computational models as well as Message Passing Interface (MPI), iterative algorithms. This cloud is more efficient than an enterprise private cloud and offers storage and computing services that are up to 20% to 30% cheaper. Stable offline analysis services that last more than seven years. Also, multi-level sandbox protection is possible. Monitoring and monitoring are possible. MaxCompute uses tunnels for data transmission. Tunnels can be scaled and used to import and export PB-level data daily. Multiple tunnels allow you to import all data and history data.
  • 38
    Apache Spark Reviews

    Apache Spark

    Apache Software Foundation

    Apache Spark™, a unified analytics engine that can handle large-scale data processing, is available. Apache Spark delivers high performance for streaming and batch data. It uses a state of the art DAG scheduler, query optimizer, as well as a physical execution engine. Spark has over 80 high-level operators, making it easy to create parallel apps. You can also use it interactively via the Scala, Python and R SQL shells. Spark powers a number of libraries, including SQL and DataFrames and MLlib for machine-learning, GraphX and Spark Streaming. These libraries can be combined seamlessly in one application. Spark can run on Hadoop, Apache Mesos and Kubernetes. It can also be used standalone or in the cloud. It can access a variety of data sources. Spark can be run in standalone cluster mode on EC2, Hadoop YARN and Mesos. Access data in HDFS and Alluxio.
  • 39
    Dimodelo Reviews

    Dimodelo

    Dimodelo

    $899 per month
    Instead of getting bogged down in data warehouse code, keep your eyes on the important and compelling reporting, analytics, and insights. Your data warehouse should not become a mess of hundreds of unmanageable stored procedures, notebooks, stored processes, tables, and other complicated pieces. Views and other information. The effort required to design, build and manage a data warehouse is dramatically reduced with Dimodelo DW Studio. You can design, build, and deploy a data warehouse that targets Azure Synapse Analytics. Dimodelo Data Warehouse Studio creates a best-practice architecture using Azure Data Lake, Polybase, and Azure Synapse Analytics. This results in a modern, high-performance data warehouse in the cloud. Dimodelo Data Warehouse Studio creates a best-practice architecture that delivers a modern, high-performance data warehouse in the cloud by using parallel bulk loads and in memory tables.
  • 40
    AnalyticDB Reviews

    AnalyticDB

    Alibaba Cloud

    $0.248 per hour
    AnalyticDB for MySQL, a high-performance data warehouse service, is safe, stable, and simple to use. It makes it easy to create online statistical reports, multidimensional analyses solutions, and real time data warehouses. AnalyticDB for MySQL uses distributed computing architecture which allows it to use elastic scaling capabilities of the cloud to compute tens to billions of data records in real-time. AnalyticDB for MySQL stores data using relational models. It can also use SQL to compute and analyze data. AnalyticDB for MySQL allows you to manage your databases, scale in and out nodes, scale up or down instances, and more. It offers various visualization and ETL tools that make data processing in enterprises easier. Instant multidimensional analysis of large data sets.
  • 41
    Ocient Hyperscale Data Warehouse Reviews
    Ocient Hyperscale Data Warehouse transforms data and loads it in seconds. It enables organizations to store more data and run queries on hyperscale data up to 50x faster. Ocient completely reimagined their data warehouse design in order to deliver next-generation data analysis. Ocient Hyperscale Data Warehouse provides storage next to compute to maximize performance on industry standard hardware. It allows users to transform, stream, or load data directly and returns previously unfeasible queries within seconds. Ocient has benchmarked query performance levels that are up to 50x higher than comparable products. The Ocient Hyperscale Data Warehouse empowers next generation data analytics solutions in key areas that are lacking existing solutions.
  • 42
    Kinetica Reviews
    A cloud database that can scale to handle large streaming data sets. Kinetica harnesses modern vectorized processors to perform orders of magnitude faster for real-time spatial or temporal workloads. In real-time, track and gain intelligence from billions upon billions of moving objects. Vectorization unlocks new levels in performance for analytics on spatial or time series data at large scale. You can query and ingest simultaneously to take action on real-time events. Kinetica's lockless architecture allows for distributed ingestion, which means data is always available to be accessed as soon as it arrives. Vectorized processing allows you to do more with fewer resources. More power means simpler data structures which can be stored more efficiently, which in turn allows you to spend less time engineering your data. Vectorized processing allows for incredibly fast analytics and detailed visualizations of moving objects at large scale.
  • 43
    Oracle Autonomous Data Warehouse Reviews
    Oracle Autonomous Data Warehouse, a cloud-based data warehouse service, eliminates the complexity of operating a data warehouse, data warehouse center, or dw cloud. It also makes it easy to secure data and develop data-driven apps. It automates provisioning and tuning, scaling, security, tuning, scaling, as well as backing up the data warehouse. It provides tools for self-service data loading and data transformations, business models and automatic insights. There are also built-in converged databases capabilities that allow for simpler queries across multiple types of data and machine learning analysis. It is available in both the Oracle cloud public and customers' data centers using Oracle Cloud@Customer. DSC, an industry expert, has provided a detailed analysis that demonstrates why Oracle Autonomous Data Warehouse is a better choice for most global organizations. Find out about compatible applications and tools with Autonomous Data Warehouse.
  • 44
    SelectDB Reviews

    SelectDB

    SelectDB

    $0.22 per hour
    SelectDB is an advanced data warehouse built on Apache Doris. It supports rapid query analysis of large-scale, real-time data. Clickhouse to Apache Doris to separate the lake warehouse, and upgrade the lake storage. Fast-hand OLAP system carries out nearly 1 billion queries every day in order to provide data services for various scenes. The original lake warehouse separation was abandoned due to problems with storage redundancy and resource seizure. Also, it was difficult to query and adjust. It was decided to use Apache Doris lakewarehouse, along with Doris's materialized views rewriting capability and automated services to achieve high-performance query and flexible governance. Write real-time data within seconds and synchronize data from databases and streams. Data storage engine with real-time update and addition, as well as real-time polymerization.
  • 45
    Azure Synapse Analytics Reviews
    Azure Synapse is the Azure SQL Data Warehouse. Azure Synapse, a limitless analytics platform that combines enterprise data warehouse and Big Data analytics, is called Azure Synapse. It allows you to query data at your own pace, with either serverless or provisioned resources - at scale. Azure Synapse combines these two worlds with a single experience to ingest and prepare, manage and serve data for machine learning and BI needs.
  • 46
    Vertica Reviews
    The Unified Analytics Warehouse. The Unified Analytics Warehouse is the best place to find high-performing analytics and machine learning at large scale. Tech research analysts are seeing new leaders as they strive to deliver game-changing big data analytics. Vertica empowers data-driven companies so they can make the most of their analytics initiatives. It offers advanced time-series, geospatial, and machine learning capabilities, as well as data lake integration, user-definable extensions, cloud-optimized architecture and more. Vertica's Under the Hood webcast series allows you to dive into the features of Vertica - delivered by Vertica engineers, technical experts, and others - and discover what makes it the most scalable and scalable advanced analytical data database on the market. Vertica supports the most data-driven disruptors around the globe in their pursuit for industry and business transformation.
  • 47
    BigLake Reviews
    BigLake is a storage platform that unifies data warehouses, lakes and allows BigQuery and open-source frameworks such as Spark to access data with fine-grained control. BigLake offers accelerated query performance across multicloud storage and open formats like Apache Iceberg. You can store one copy of your data across all data warehouses and lakes. Multi-cloud governance and fine-grained access control for distributed data. Integration with open-source analytics tools, and open data formats is seamless. You can unlock analytics on distributed data no matter where it is stored. While choosing the best open-source or cloud-native analytics tools over a single copy, you can also access analytics on distributed data. Fine-grained access control for open source engines such as Apache Spark, Presto and Trino and open formats like Parquet. BigQuery supports performant queries on data lakes. Integrates with Dataplex for management at scale, including logical organization.
  • 48
    Space and Time Reviews
    Dapps built on top Space and Time are blockchain interoperable. They crunch SQL + machine learning for Gaming/DeFi as well as any other decentralized applications that require verifiable tamperproofing or blockchain-security. By connecting off-chain storage to on-chain analytics insights, we merge blockchain data with a new-generation database. Multi-chain integration, indexing and anchoring are made easy by combining on-chain and offline data. Advanced data security with proven capabilities. Connect to real-time, relational blockchain data that we have already indexed from major chain data sources as well as data you have ingested off-chain. You can send tamperproof query results to smart contract in a trustless manner or publish the query results directly onto-chain using our cryptographic guarantees (Proof SQL).
  • 49
    Archon Data Store Reviews
    Archon Data Store™ is an open-source archive lakehouse platform that allows you to store, manage and gain insights from large volumes of data. Its minimal footprint and compliance features enable large-scale processing and analysis of structured and unstructured data within your organization. Archon Data Store combines data warehouses, data lakes and other features into a single platform. This unified approach eliminates silos of data, streamlining workflows in data engineering, analytics and data science. Archon Data Store ensures data integrity through metadata centralization, optimized storage, and distributed computing. Its common approach to managing data, securing it, and governing it helps you innovate faster and operate more efficiently. Archon Data Store is a single platform that archives and analyzes all of your organization's data, while providing operational efficiencies.
  • 50
    IBM Industry Models Reviews
    A data model for the industry from IBM is a blueprint that combines best practices, government regulations, and the complex data analysis needs of the industry. A model can help manage data lakes and data warehouses to gain deeper insights that will allow you to make better decisions. These models include business terminology, warehouse design models, and business intelligence templates. This framework is designed for specific industry-specific organizations to help you accelerate your analytics journey. Industry-specific information infrastructures make it easier to analyze and design functional requirements. To model changing requirements, create and rationalize data warehouses with a consistent architecture. To accelerate transformation, reduce risk and deliver better data to all apps. Establish enterprise-wide KPIs to address compliance, reporting, and analysis requirements. To govern your data, use industry data model vocabulary and templates for regulatory reporting.