AnalyticsCreator
Accelerate your data journey with AnalyticsCreator—a metadata-driven data warehouse automation solution purpose-built for the Microsoft data ecosystem. AnalyticsCreator simplifies the design, development, and deployment of modern data architectures, including dimensional models, data marts, data vaults, or blended modeling approaches tailored to your business needs.
Seamlessly integrate with Microsoft SQL Server, Azure Synapse Analytics, Microsoft Fabric (including OneLake and SQL Endpoint Lakehouse environments), and Power BI. AnalyticsCreator automates ELT pipeline creation, data modeling, historization, and semantic layer generation—helping reduce tool sprawl and minimizing manual SQL coding.
Designed to support CI/CD pipelines, AnalyticsCreator connects easily with Azure DevOps and GitHub for version-controlled deployments across development, test, and production environments. This ensures faster, error-free releases while maintaining governance and control across your entire data engineering workflow.
Key features include automated documentation, end-to-end data lineage tracking, and adaptive schema evolution—enabling teams to manage change, reduce risk, and maintain auditability at scale. AnalyticsCreator empowers agile data engineering by enabling rapid prototyping and production-grade deployments for Microsoft-centric data initiatives.
By eliminating repetitive manual tasks and deployment risks, AnalyticsCreator allows your team to focus on delivering actionable business insights—accelerating time-to-value for your data products and analytics initiatives.
Learn more
Vertex AI
Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case.
Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
Learn more
Microsoft Foundry Models
Microsoft Foundry Models centralizes more than 11,000 leading AI models, offering enterprises a single place to explore, compare, fine-tune, and deploy AI for any use case. It includes top-performing models from OpenAI, Anthropic, Cohere, Meta, Mistral AI, DeepSeek, Black Forest Labs, and Microsoft’s own Azure OpenAI offerings. Teams can search by task—such as reasoning, generation, multimodal, or domain-specific workloads—and instantly test models in a built-in playground. Foundry Models simplifies customization with ready-to-use fine-tuning pipelines that require no infrastructure setup. Developers can upload internal datasets to benchmark and evaluate model accuracy, ensuring the right fit for production environments. With seamless deployment into managed instances, organizations get automatic scaling, traffic management, and secure hosting. The platform is backed by Azure’s enterprise-grade security and over 100 compliance certifications, supporting regulated industries and global operations. By integrating discovery, testing, tuning, and deployment, Foundry Models dramatically shortens AI development cycles and speeds time to value.
Learn more
Visual Layer
Visual Layer is a production-grade platform built for teams handling image and video datasets at scale. It enables direct interaction with visual data—searching, filtering, labeling, and analyzing—without needing custom scripts or manual sorting. Originally developed by the creators of Fastdup, it extends the same deduplication capabilities into full dataset workflows.
Designed to be infrastructure-agnostic, Visual Layer can run entirely on-premise, in the cloud, or embedded via API. It's model-agnostic too, making it useful for debugging, cleaning, or pretraining tasks in any ML pipeline. The system flags anomalies, catch mislabeled frames, and surfaces diverse subsets to improve generalization and reduce noise.
It fits into existing pipelines without requiring migration or vendor lock-in, and supports engineers and ops teams alike.
Learn more