Best Azure Data Lake Alternatives in 2025

Find the top alternatives to Azure Data Lake currently available. Compare ratings, reviews, pricing, and features of Azure Data Lake alternatives in 2025. Slashdot lists the best Azure Data Lake alternatives on the market that offer competing products that are similar to Azure Data Lake. Sort through Azure Data Lake alternatives below to make the best choice for your needs

  • 1
    Teradata VantageCloud Reviews
    See Software
    Learn More
    Compare Both
    Teradata VantageCloud: Open, Scalable Cloud Analytics for AI VantageCloud is Teradata’s cloud-native analytics and data platform designed for performance and flexibility. It unifies data from multiple sources, supports complex analytics at scale, and makes it easier to deploy AI and machine learning models in production. With built-in support for multi-cloud and hybrid deployments, VantageCloud lets organizations manage data across AWS, Azure, Google Cloud, and on-prem environments without vendor lock-in. Its open architecture integrates with modern data tools and standard formats, giving developers and data teams freedom to innovate while keeping costs predictable.
  • 2
    AnalyticsCreator Reviews
    Top Pick See Software
    Learn More
    Compare Both
    Accelerate your data journey with AnalyticsCreator—a metadata-driven data warehouse automation solution purpose-built for the Microsoft data ecosystem. AnalyticsCreator simplifies the design, development, and deployment of modern data architectures, including dimensional models, data marts, data vaults, or blended modeling approaches tailored to your business needs. Seamlessly integrate with Microsoft SQL Server, Azure Synapse Analytics, Microsoft Fabric (including OneLake and SQL Endpoint Lakehouse environments), and Power BI. AnalyticsCreator automates ELT pipeline creation, data modeling, historization, and semantic layer generation—helping reduce tool sprawl and minimizing manual SQL coding. Designed to support CI/CD pipelines, AnalyticsCreator connects easily with Azure DevOps and GitHub for version-controlled deployments across development, test, and production environments. This ensures faster, error-free releases while maintaining governance and control across your entire data engineering workflow. Key features include automated documentation, end-to-end data lineage tracking, and adaptive schema evolution—enabling teams to manage change, reduce risk, and maintain auditability at scale. AnalyticsCreator empowers agile data engineering by enabling rapid prototyping and production-grade deployments for Microsoft-centric data initiatives. By eliminating repetitive manual tasks and deployment risks, AnalyticsCreator allows your team to focus on delivering actionable business insights—accelerating time-to-value for your data products and analytics initiatives.
  • 3
    Azure Data Factory Reviews
    Combine data silos effortlessly using Azure Data Factory, a versatile service designed to meet diverse data integration requirements for users of all expertise levels. You can easily create both ETL and ELT workflows without any coding through its user-friendly visual interface, or opt to write custom code if you prefer. The platform supports the seamless integration of data sources with over 90 pre-built, hassle-free connectors, all at no extra cost. With a focus on your data, this serverless integration service manages everything else for you. Azure Data Factory serves as a robust layer for data integration and transformation, facilitating your digital transformation goals. Furthermore, it empowers independent software vendors (ISVs) to enhance their SaaS applications by incorporating integrated hybrid data, enabling them to provide more impactful, data-driven user experiences. By utilizing pre-built connectors and scalable integration capabilities, you can concentrate on enhancing user satisfaction while Azure Data Factory efficiently handles the backend processes, ultimately streamlining your data management efforts.
  • 4
    Amazon S3 Reviews
    Amazon Simple Storage Service (Amazon S3) is a versatile object storage solution that provides exceptional scalability, data availability, security, and performance. It accommodates clients from various sectors, enabling them to securely store and manage any volume of data for diverse applications, including data lakes, websites, mobile apps, backups, archiving, enterprise software, IoT devices, and big data analytics. With user-friendly management tools, Amazon S3 allows users to effectively organize their data and set tailored access permissions to satisfy their unique business, organizational, and compliance needs. Offering an impressive durability rate of 99.999999999% (11 nines), it supports millions of applications for businesses globally. Businesses can easily adjust their storage capacity to match changing demands without needing upfront investments or lengthy resource acquisition processes. Furthermore, the high durability ensures that data remains safe and accessible, contributing to operational resilience and peace of mind for organizations.
  • 5
    OneBlox Reviews
    OneBlox utilizes an integrated scale-out Ring architecture that allows numerous appliances to function as a cohesive global file system. This Ring can comprise one or several OneBlox units, accommodating from a few terabytes to hundreds of terabytes of raw flash storage, or even scaling up to multiple petabytes with hard drives. As the demands for storage evolve, OneBlox provides remarkable flexibility; users can effortlessly introduce any number of drives, at any desired time, and in varying capacities to fulfill their storage needs. This expansion of the global storage pool occurs without the need for additional configuration and without any interruption to applications. Additionally, OneBlox stands out by supporting VMware and Hyper-V environments, which allows virtual machines the ability to leverage scale-out NFS datastores. Users can consolidate multiple NFS datastores within a single OneBlox Ring, scaling to hundreds of terabytes while benefiting from OneBlox’s sophisticated data reduction techniques. For those in need of exceptional performance, the OneBlox 5210 serves as an all-flash array designed specifically for consolidating resource-intensive virtual machines, ensuring optimal efficiency in high-demand scenarios. With its innovative features, OneBlox not only meets current storage needs but also anticipates future growth, making it a versatile solution for dynamic business environments.
  • 6
    Aura Object Store Reviews
    Aura Object Store is a highly scalable and persistent platform designed for the storage of media content intended for CDN content origination. This replicated HTTP object store ensures that media content is kept securely over time and supports file ingestion through various protocols, catering to both linear and Video on Demand (VoD) applications. It is tailored for operators who are in search of a robust and resilient media storage solution that can enhance their CDN capabilities. Additionally, Aura Object Store is user-friendly, cost-effective, and adapts to the growing needs of businesses effectively. Serving as the foundational element of the CDN hierarchy, it efficiently handles cache misses from multiple downstream CDN caching tiers. Utilizing standard HTTP or HTTPS for content delivery, it features a scale-out architecture that promotes redundancy and allows for storage expansion, with multiple nodes interconnected to create a unified storage cluster under a single virtualized namespace. This innovative approach ensures seamless media management and delivery, making it an excellent choice for modern content distribution needs.
  • 7
    Data Lakes on AWS Reviews
    Numerous customers of Amazon Web Services (AWS) seek a data storage and analytics solution that surpasses the agility and flexibility of conventional data management systems. A data lake has emerged as an innovative and increasingly favored method for storing and analyzing data, as it enables organizations to handle various data types from diverse sources, all within a unified repository that accommodates both structured and unstructured data. The AWS Cloud supplies essential components necessary for customers to create a secure, adaptable, and economical data lake. These components comprise AWS managed services designed to assist in the ingestion, storage, discovery, processing, and analysis of both structured and unstructured data. To aid our customers in constructing their data lakes, AWS provides a comprehensive data lake solution, which serves as an automated reference implementation that establishes a highly available and cost-efficient data lake architecture on the AWS Cloud, complete with an intuitive console for searching and requesting datasets. Furthermore, this solution not only enhances data accessibility but also streamlines the overall data management process for organizations.
  • 8
    OpenIO Reviews
    OpenIO represents a software-defined, open-source object storage solution tailored for Big Data, high-performance computing (HPC), and artificial intelligence (AI) applications. Its innovative distributed grid architecture, powered by the proprietary self-learning ConsciousGrid™ technology, allows for effortless scaling without the need for mandatory data rebalancing while maintaining consistently high performance. This solution is compatible with S3 and can be installed either on-premises or in the cloud, accommodating any hardware configuration you prefer. Effortlessly scale your storage needs from Terabytes to Exabytes by simply adding nodes, which enhances capacity and boosts performance in a linear manner. Capable of transferring data at speeds reaching 1 Tbps and beyond, OpenIO ensures reliable high performance even during scaling operations. It is particularly suited for demanding workloads that require substantial capacity. You have the flexibility to select servers and storage media that align with your changing requirements, effectively avoiding vendor lock-in. Additionally, you can seamlessly integrate heterogeneous hardware of varying specifications, generations, and capacities at any time, ensuring that your system can adapt as your needs evolve. This adaptability makes OpenIO a compelling choice for organizations seeking a versatile storage solution.
  • 9
    BigLake Reviews
    BigLake serves as a storage engine that merges the functionalities of data warehouses and lakes, allowing BigQuery and open-source frameworks like Spark to efficiently access data while enforcing detailed access controls. It enhances query performance across various multi-cloud storage systems and supports open formats, including Apache Iceberg. Users can maintain a single version of data, ensuring consistent features across both data warehouses and lakes. With its capacity for fine-grained access management and comprehensive governance over distributed data, BigLake seamlessly integrates with open-source analytics tools and embraces open data formats. This solution empowers users to conduct analytics on distributed data, regardless of its storage location or method, while selecting the most suitable analytics tools, whether they be open-source or cloud-native, all based on a singular data copy. Additionally, it offers fine-grained access control for open-source engines such as Apache Spark, Presto, and Trino, along with formats like Parquet. As a result, users can execute high-performing queries on data lakes driven by BigQuery. Furthermore, BigLake collaborates with Dataplex, facilitating scalable management and logical organization of data assets. This integration not only enhances operational efficiency but also simplifies the complexities of data governance in large-scale environments.
  • 10
    Azure Blob Storage Reviews
    Azure Blob Storage offers a highly scalable and secure object storage solution tailored for a variety of applications, including cloud-native workloads, data lakes, high-performance computing, archives, and machine learning projects. It enables users to construct data lakes that facilitate analytics while also serving as a robust storage option for developing powerful mobile and cloud-native applications. With tiered storage options, users can effectively manage costs associated with long-term data retention while having the flexibility to scale up resources for intensive computing and machine learning tasks. Designed from the ground up, Blob storage meets the stringent requirements for scale, security, and availability that developers of mobile, web, and cloud-native applications demand. It serves as a foundational element for serverless architectures, such as Azure Functions, further enhancing its utility. Additionally, Blob storage is compatible with a wide range of popular development frameworks, including Java, .NET, Python, and Node.js, and it uniquely offers a premium SSD-based object storage tier, making it ideal for low-latency and interactive applications. This versatility allows developers to optimize their workflows and improve application performance across various platforms and environments.
  • 11
    ELCA Smart Data Lake Builder Reviews
    Traditional Data Lakes frequently simplify their role to merely serving as inexpensive raw data repositories, overlooking crucial elements such as data transformation, quality assurance, and security protocols. Consequently, data scientists often find themselves dedicating as much as 80% of their time to the processes of data acquisition, comprehension, and cleansing, which delays their ability to leverage their primary skills effectively. Furthermore, the establishment of traditional Data Lakes tends to occur in isolation by various departments, each utilizing different standards and tools, complicating the implementation of cohesive analytical initiatives. In contrast, Smart Data Lakes address these challenges by offering both architectural and methodological frameworks, alongside a robust toolset designed to create a high-quality data infrastructure. Essential to any contemporary analytics platform, Smart Data Lakes facilitate seamless integration with popular Data Science tools and open-source technologies, including those used for artificial intelligence and machine learning applications. Their cost-effective and scalable storage solutions accommodate a wide range of data types, including unstructured data and intricate data models, thereby enhancing overall analytical capabilities. This adaptability not only streamlines operations but also fosters collaboration across different departments, ultimately leading to more informed decision-making.
  • 12
    Qlik Data Integration Reviews
    The Qlik Data Integration platform designed for managed data lakes streamlines the delivery of consistently updated, reliable, and trusted data sets for business analytics purposes. Data engineers enjoy the flexibility to swiftly incorporate new data sources, ensuring effective management at every stage of the data lake pipeline, which includes real-time data ingestion, refinement, provisioning, and governance. It serves as an intuitive and comprehensive solution for the ongoing ingestion of enterprise data into widely-used data lakes in real-time. Employing a model-driven strategy, it facilitates the rapid design, construction, and management of data lakes, whether on-premises or in the cloud. Furthermore, it provides a sophisticated enterprise-scale data catalog that enables secure sharing of all derived data sets with business users, thereby enhancing collaboration and data-driven decision-making across the organization. This comprehensive approach not only optimizes data management but also empowers users by making valuable insights readily accessible.
  • 13
    lakeFS Reviews
    lakeFS allows you to control your data lake similarly to how you manage your source code, facilitating parallel pipelines for experimentation as well as continuous integration and deployment for your data. This platform streamlines the workflows of engineers, data scientists, and analysts who are driving innovation through data. As an open-source solution, lakeFS enhances the resilience and manageability of object-storage-based data lakes. With lakeFS, you can execute reliable, atomic, and versioned operations on your data lake, encompassing everything from intricate ETL processes to advanced data science and analytics tasks. It is compatible with major cloud storage options, including AWS S3, Azure Blob Storage, and Google Cloud Storage (GCS). Furthermore, lakeFS seamlessly integrates with a variety of modern data frameworks such as Spark, Hive, AWS Athena, and Presto, thanks to its API compatibility with S3. The platform features a Git-like model for branching and committing that can efficiently scale to handle exabytes of data while leveraging the storage capabilities of S3, GCS, or Azure Blob. In addition, lakeFS empowers teams to collaborate more effectively by allowing multiple users to work on the same dataset without conflicts, making it an invaluable tool for data-driven organizations.
  • 14
    AWS Lake Formation Reviews
    AWS Lake Formation is a service designed to streamline the creation of a secure data lake in just a matter of days. A data lake serves as a centralized, carefully organized, and protected repository that accommodates all data, maintaining both its raw and processed formats for analytical purposes. By utilizing a data lake, organizations can eliminate data silos and integrate various analytical approaches, leading to deeper insights and more informed business choices. However, the traditional process of establishing and maintaining data lakes is often burdened with labor-intensive, complex, and time-consuming tasks. This includes activities such as importing data from various sources, overseeing data flows, configuring partitions, enabling encryption and managing encryption keys, defining and monitoring transformation jobs, reorganizing data into a columnar structure, removing duplicate records, and linking related entries. After data is successfully loaded into the data lake, it is essential to implement precise access controls for datasets and continuously monitor access across a broad spectrum of analytics and machine learning tools and services. The comprehensive management of these tasks can significantly enhance the overall efficiency and security of data handling within an organization.
  • 15
    Qlik Compose Reviews
    Qlik Compose for Data Warehouses offers a contemporary solution that streamlines and enhances the process of establishing and managing data warehouses. This tool not only automates the design of the warehouse but also generates ETL code and implements updates swiftly, all while adhering to established best practices and reliable design frameworks. By utilizing Qlik Compose for Data Warehouses, organizations can significantly cut down on the time, expense, and risk associated with BI initiatives, regardless of whether they are deployed on-premises or in the cloud. On the other hand, Qlik Compose for Data Lakes simplifies the creation of analytics-ready datasets by automating data pipeline processes. By handling data ingestion, schema setup, and ongoing updates, companies can achieve a quicker return on investment from their data lake resources, further enhancing their data strategy. Ultimately, these tools empower organizations to maximize their data potential efficiently.
  • 16
    Onehouse Reviews
    Introducing a unique cloud data lakehouse that is entirely managed and capable of ingesting data from all your sources within minutes, while seamlessly accommodating every query engine at scale, all at a significantly reduced cost. This platform enables ingestion from both databases and event streams at terabyte scale in near real-time, offering the ease of fully managed pipelines. Furthermore, you can execute queries using any engine, catering to diverse needs such as business intelligence, real-time analytics, and AI/ML applications. By adopting this solution, you can reduce your expenses by over 50% compared to traditional cloud data warehouses and ETL tools, thanks to straightforward usage-based pricing. Deployment is swift, taking just minutes, without the burden of engineering overhead, thanks to a fully managed and highly optimized cloud service. Consolidate your data into a single source of truth, eliminating the necessity of duplicating data across various warehouses and lakes. Select the appropriate table format for each task, benefitting from seamless interoperability between Apache Hudi, Apache Iceberg, and Delta Lake. Additionally, quickly set up managed pipelines for change data capture (CDC) and streaming ingestion, ensuring that your data architecture is both agile and efficient. This innovative approach not only streamlines your data processes but also enhances decision-making capabilities across your organization.
  • 17
    Alibaba Cloud Data Lake Formation Reviews
    A data lake serves as a comprehensive repository designed for handling extensive data and artificial intelligence operations, accommodating both structured and unstructured data at any volume. It is essential for organizations looking to harness the power of Data Lake Formation (DLF), which simplifies the creation of a cloud-native data lake environment. DLF integrates effortlessly with various computing frameworks while enabling centralized management of metadata and robust enterprise-level permission controls. It systematically gathers structured, semi-structured, and unstructured data, ensuring substantial storage capabilities, and employs a design that decouples computing resources from storage solutions. This architecture allows for on-demand resource planning at minimal costs, significantly enhancing data processing efficiency to adapt to swiftly evolving business needs. Furthermore, DLF is capable of automatically discovering and consolidating metadata from multiple sources, effectively addressing issues related to data silos. Ultimately, this functionality streamlines data management, making it easier for organizations to leverage their data assets.
  • 18
    Cribl Lake Reviews
    Experience the freedom of storage that allows data to flow freely without restrictions. With a managed data lake, you can quickly set up your system and start utilizing data without needing to be an expert in the field. Cribl Lake ensures you won’t be overwhelmed by data, enabling effortless storage, management, policy enforcement, and accessibility whenever necessary. Embrace the future with open formats while benefiting from consistent retention, security, and access control policies. Let Cribl take care of the complex tasks, transforming data into a resource that delivers value to your teams and tools. With Cribl Lake, you can be operational in minutes instead of months, thanks to seamless automated provisioning and ready-to-use integrations. Enhance your workflows using Stream and Edge for robust data ingestion and routing capabilities. Cribl Search simplifies your querying process, providing a unified approach regardless of where your data resides, so you can extract insights without unnecessary delays. Follow a straightforward route to gather and maintain data for the long haul while easily meeting legal and business obligations for data retention by setting specific retention timelines. By prioritizing user-friendliness and efficiency, Cribl Lake equips you with the tools needed to maximize data utility and compliance.
  • 19
    Kylo Reviews
    Kylo serves as an open-source platform designed for effective management of enterprise-level data lakes, facilitating self-service data ingestion and preparation while also incorporating robust metadata management, governance, security, and best practices derived from Think Big's extensive experience with over 150 big data implementation projects. It allows users to perform self-service data ingestion complemented by features for data cleansing, validation, and automatic profiling. Users can manipulate data effortlessly using visual SQL and an interactive transformation interface that is easy to navigate. The platform enables users to search and explore both data and metadata, examine data lineage, and access profiling statistics. Additionally, it provides tools to monitor the health of data feeds and services within the data lake, allowing users to track service level agreements (SLAs) and address performance issues effectively. Users can also create batch or streaming pipeline templates using Apache NiFi and register them with Kylo, thereby empowering self-service capabilities. Despite organizations investing substantial engineering resources to transfer data into Hadoop, they often face challenges in maintaining governance and ensuring data quality, but Kylo significantly eases the data ingestion process by allowing data owners to take control through its intuitive guided user interface. This innovative approach not only enhances operational efficiency but also fosters a culture of data ownership within organizations.
  • 20
    Lentiq Reviews
    Lentiq offers a collaborative data lake as a service that empowers small teams to achieve significant results. It allows users to swiftly execute data science, machine learning, and data analysis within the cloud platform of their choice. With Lentiq, teams can seamlessly ingest data in real time, process and clean it, and share their findings effortlessly. This platform also facilitates the building, training, and internal sharing of models, enabling data teams to collaborate freely and innovate without limitations. Data lakes serve as versatile storage and processing environments, equipped with machine learning, ETL, and schema-on-read querying features, among others. If you’re delving into the realm of data science, a data lake is essential for your success. In today’s landscape, characterized by the Post-Hadoop era, large centralized data lakes have become outdated. Instead, Lentiq introduces data pools—interconnected mini-data lakes across multiple clouds—that work harmoniously to provide a secure, stable, and efficient environment for data science endeavors. This innovative approach enhances the overall agility and effectiveness of data-driven projects.
  • 21
    Dremio Reviews
    Dremio provides lightning-fast queries as well as a self-service semantic layer directly to your data lake storage. No data moving to proprietary data warehouses, and no cubes, aggregation tables, or extracts. Data architects have flexibility and control, while data consumers have self-service. Apache Arrow and Dremio technologies such as Data Reflections, Columnar Cloud Cache(C3), and Predictive Pipelining combine to make it easy to query your data lake storage. An abstraction layer allows IT to apply security and business meaning while allowing analysts and data scientists access data to explore it and create new virtual datasets. Dremio's semantic layers is an integrated searchable catalog that indexes all your metadata so business users can make sense of your data. The semantic layer is made up of virtual datasets and spaces, which are all searchable and indexed.
  • 22
    Upsolver Reviews
    Upsolver makes it easy to create a governed data lake, manage, integrate, and prepare streaming data for analysis. Only use auto-generated schema on-read SQL to create pipelines. A visual IDE that makes it easy to build pipelines. Add Upserts to data lake tables. Mix streaming and large-scale batch data. Automated schema evolution and reprocessing of previous state. Automated orchestration of pipelines (no Dags). Fully-managed execution at scale Strong consistency guarantee over object storage Nearly zero maintenance overhead for analytics-ready information. Integral hygiene for data lake tables, including columnar formats, partitioning and compaction, as well as vacuuming. Low cost, 100,000 events per second (billions every day) Continuous lock-free compaction to eliminate the "small file" problem. Parquet-based tables are ideal for quick queries.
  • 23
    Amazon Security Lake Reviews
    Amazon Security Lake seamlessly consolidates security information from various AWS environments, SaaS platforms, on-premises systems, and cloud sources into a specialized data lake within your account. This service enables you to gain a comprehensive insight into your security data across the entire organization, enhancing the safeguarding of your workloads, applications, and data. By utilizing the Open Cybersecurity Schema Framework (OCSF), which is an open standard, Security Lake effectively normalizes and integrates security data from AWS along with a wide array of enterprise security data sources. You have the flexibility to use your preferred analytics tools to examine your security data while maintaining full control and ownership over it. Furthermore, you can centralize visibility into data from both cloud and on-premises sources across your AWS accounts and Regions. This approach not only streamlines your data management at scale but also ensures consistency in your security data by adhering to an open standard, allowing for more efficient and effective security practices across your organization. Ultimately, this solution empowers organizations to respond to security threats more swiftly and intelligently.
  • 24
    Infor Data Lake Reviews
    Addressing the challenges faced by modern enterprises and industries hinges on the effective utilization of big data. The capability to gather information from various sources within your organization—whether it originates from different applications, individuals, or IoT systems—presents enormous opportunities. Infor’s Data Lake tools offer schema-on-read intelligence coupled with a rapid and adaptable data consumption framework, facilitating innovative approaches to critical decision-making. By gaining streamlined access to your entire Infor ecosystem, you can initiate the process of capturing and leveraging big data to enhance your analytics and machine learning initiatives. Extremely scalable, the Infor Data Lake serves as a cohesive repository, allowing for the accumulation of all your organizational data. As you expand your insights and investments, you can incorporate additional content, leading to more informed decisions and enriched analytics capabilities while creating robust datasets to strengthen your machine learning operations. This comprehensive approach not only optimizes data management but also empowers organizations to stay ahead in a rapidly evolving landscape.
  • 25
    Electrik.Ai Reviews

    Electrik.Ai

    Electrik.Ai

    $49 per month
    Effortlessly import marketing data into your preferred data warehouse or cloud storage solution, including BigQuery, Snowflake, Redshift, Azure SQL, AWS S3, Azure Data Lake, and Google Cloud Storage, through our fully-managed ETL pipelines hosted in the cloud. Our comprehensive marketing data warehouse consolidates all your marketing information and delivers valuable insights, such as advertising performance, cross-channel attribution, content analysis, competitor intelligence, and much more. Additionally, our customer data platform facilitates real-time identity resolution across various data sources, providing a cohesive view of the customer and their journey. Electrik.AI serves as a cloud-driven marketing analytics software and an all-encompassing service platform designed to optimize your marketing efforts. Moreover, Electrik.AI’s Google Analytics Hit Data Extractor is capable of enhancing and retrieving the un-sampled hit-level data transmitted to Google Analytics from your website or application, routinely transferring it to your specified destination database, data warehouse, or data lake for further analysis. This ensures you have access to the most accurate and actionable data to drive your marketing strategies effectively.
  • 26
    DataLakeHouse.io Reviews
    DataLakeHouse.io Data Sync allows users to replicate and synchronize data from operational systems (on-premises and cloud-based SaaS), into destinations of their choice, primarily Cloud Data Warehouses. DLH.io is a tool for marketing teams, but also for any data team in any size organization. It enables business cases to build single source of truth data repositories such as dimensional warehouses, data vaults 2.0, and machine learning workloads. Use cases include technical and functional examples, including: ELT and ETL, Data Warehouses, Pipelines, Analytics, AI & Machine Learning and Data, Marketing and Sales, Retail and FinTech, Restaurants, Manufacturing, Public Sector and more. DataLakeHouse.io has a mission: to orchestrate the data of every organization, especially those who wish to become data-driven or continue their data-driven strategy journey. DataLakeHouse.io, aka DLH.io, allows hundreds of companies manage their cloud data warehousing solutions.
  • 27
    NewEvol Reviews

    NewEvol

    Sattrix Software Solutions

    NewEvol is an innovative product suite that leverages data science to conduct advanced analytics, pinpointing irregularities within the data itself. Enhanced by visualization tools, rule-based alerts, automation, and responsive features, NewEvol presents an appealing solution for enterprises of all sizes. With the integration of Machine Learning (ML) and security intelligence, NewEvol stands out as a resilient system equipped to meet complex business requirements. The NewEvol Data Lake is designed for effortless deployment and management, eliminating the need for a team of specialized data administrators. As your organization's data demands evolve, the system automatically adapts by scaling and reallocating resources as necessary. Furthermore, the NewEvol Data Lake boasts extensive capabilities for data ingestion, allowing for the enrichment of information drawn from a variety of sources. It supports diverse data formats, including delimited files, JSON, XML, PCAP, and Syslog, ensuring a comprehensive approach to data handling. Additionally, it employs a state-of-the-art, contextually aware event analytics model to enhance the enrichment process, enabling businesses to derive deeper insights from their data. Ultimately, NewEvol empowers organizations to navigate the complexities of data management with remarkable efficiency and precision.
  • 28
    Delta Lake Reviews
    Delta Lake serves as an open-source storage layer that integrates ACID transactions into Apache Spark™ and big data operations. In typical data lakes, multiple pipelines operate simultaneously to read and write data, which often forces data engineers to engage in a complex and time-consuming effort to maintain data integrity because transactional capabilities are absent. By incorporating ACID transactions, Delta Lake enhances data lakes and ensures a high level of consistency with its serializability feature, the most robust isolation level available. For further insights, refer to Diving into Delta Lake: Unpacking the Transaction Log. In the realm of big data, even metadata can reach substantial sizes, and Delta Lake manages metadata with the same significance as the actual data, utilizing Spark's distributed processing strengths for efficient handling. Consequently, Delta Lake is capable of managing massive tables that can scale to petabytes, containing billions of partitions and files without difficulty. Additionally, Delta Lake offers data snapshots, which allow developers to retrieve and revert to previous data versions, facilitating audits, rollbacks, or the replication of experiments while ensuring data reliability and consistency across the board.
  • 29
    Azure Data Lake Storage Reviews
    Break down data silos through a unified storage solution that effectively optimizes expenses by employing tiered storage and comprehensive policy management. Enhance data authentication with Azure Active Directory (Azure AD) alongside role-based access control (RBAC), while bolstering data protection with features such as encryption at rest and advanced threat protection. This approach ensures a highly secure environment with adaptable mechanisms for safeguarding access, encryption, and network-level governance. Utilizing a singular storage platform, you can seamlessly ingest, process, and visualize data while supporting prevalent analytics frameworks. Cost efficiency is further achieved through the independent scaling of storage and compute resources, lifecycle policy management, and object-level tiering. With Azure's extensive global infrastructure, you can effortlessly meet diverse capacity demands and manage data efficiently. Additionally, conduct large-scale analytical queries with consistently high performance, ensuring that your data management meets both current and future needs.
  • 30
    Huawei Cloud Data Lake Governance Center Reviews
    Transform your big data processes and create intelligent knowledge repositories with the Data Lake Governance Center (DGC), a comprehensive platform for managing all facets of data lake operations, including design, development, integration, quality, and asset management. With its intuitive visual interface, you can establish a robust data lake governance framework that enhances the efficiency of your data lifecycle management. Leverage analytics and metrics to uphold strong governance throughout your organization, while also defining and tracking data standards with the ability to receive real-time alerts. Accelerate the development of data lakes by easily configuring data integrations, models, and cleansing protocols to facilitate the identification of trustworthy data sources. Enhance the overall business value derived from your data assets. DGC enables the creation of tailored solutions for various applications, such as smart government, smart taxation, and smart campuses, while providing valuable insights into sensitive information across your organization. Additionally, DGC empowers businesses to establish comprehensive catalogs, classifications, and terminologies for their data. This holistic approach ensures that data governance is not just a task, but a core aspect of your enterprise's strategy.
  • 31
    Dimodelo Reviews

    Dimodelo

    Dimodelo

    $899 per month
    Concentrate on producing insightful and impactful reports and analytics rather than getting bogged down in the complexities of data warehouse code. Avoid allowing your data warehouse to turn into a chaotic mix of numerous difficult-to-manage pipelines, notebooks, stored procedures, tables, and views. Dimodelo DW Studio significantly minimizes the workload associated with designing, constructing, deploying, and operating a data warehouse. It enables the design and deployment of a data warehouse optimized for Azure Synapse Analytics. By creating a best practice architecture that incorporates Azure Data Lake, Polybase, and Azure Synapse Analytics, Dimodelo Data Warehouse Studio ensures the delivery of a high-performance and contemporary data warehouse in the cloud. Moreover, with its use of parallel bulk loads and in-memory tables, Dimodelo Data Warehouse Studio offers an efficient solution for modern data warehousing needs, enabling teams to focus on valuable insights rather than maintenance tasks.
  • 32
    Qubole Reviews
    Qubole stands out as a straightforward, accessible, and secure Data Lake Platform tailored for machine learning, streaming, and ad-hoc analysis. Our comprehensive platform streamlines the execution of Data pipelines, Streaming Analytics, and Machine Learning tasks across any cloud environment, significantly minimizing both time and effort. No other solution matches the openness and versatility in handling data workloads that Qubole provides, all while achieving a reduction in cloud data lake expenses by more than 50 percent. By enabling quicker access to extensive petabytes of secure, reliable, and trustworthy datasets, we empower users to work with both structured and unstructured data for Analytics and Machine Learning purposes. Users can efficiently perform ETL processes, analytics, and AI/ML tasks in a seamless workflow, utilizing top-tier open-source engines along with a variety of formats, libraries, and programming languages tailored to their data's volume, diversity, service level agreements (SLAs), and organizational regulations. This adaptability ensures that Qubole remains a preferred choice for organizations aiming to optimize their data management strategies while leveraging the latest technological advancements.
  • 33
    Azure Data Lake Analytics Reviews
    Easily create and execute highly parallel data transformation and processing tasks using U-SQL, R, Python, and .NET across vast amounts of data. With no need to manage infrastructure, you can process data on demand, scale up instantly, and incur costs only per job. Azure Data Lake Analytics allows you to complete big data tasks in mere seconds. There’s no infrastructure to manage since there are no servers, virtual machines, or clusters that require monitoring or tuning. You can quickly adjust the processing capacity, measured in Azure Data Lake Analytics Units (AU), from one to thousands for every job. Payment is based solely on the processing used for each job. Take advantage of optimized data virtualization for your relational sources like Azure SQL Database and Azure Synapse Analytics. Your queries benefit from automatic optimization, as processing is performed close to the source data without requiring data movement, thereby enhancing performance and reducing latency. Additionally, this setup enables organizations to efficiently utilize their data resources and respond swiftly to analytical needs.
  • 34
    Openbridge Reviews

    Openbridge

    Openbridge

    $149 per month
    Discover how to enhance sales growth effortlessly by utilizing automated data pipelines that connect seamlessly to data lakes or cloud storage solutions without the need for coding. This adaptable platform adheres to industry standards, enabling the integration of sales and marketing data to generate automated insights for more intelligent expansion. Eliminate the hassle and costs associated with cumbersome manual data downloads. You’ll always have a clear understanding of your expenses, only paying for the services you actually use. Empower your tools with rapid access to data that is ready for analytics. Our certified developers prioritize security by exclusively working with official APIs. You can quickly initiate data pipelines sourced from widely-used platforms. With pre-built, pre-transformed pipelines at your disposal, you can unlock crucial data from sources like Amazon Vendor Central, Amazon Seller Central, Instagram Stories, Facebook, Amazon Advertising, Google Ads, and more. The processes for data ingestion and transformation require no coding, allowing teams to swiftly and affordably harness the full potential of their data. Your information is consistently safeguarded and securely stored in a reliable, customer-controlled data destination such as Databricks or Amazon Redshift, ensuring peace of mind as you manage your data assets. This streamlined approach not only saves time but also enhances overall operational efficiency.
  • 35
    BryteFlow Reviews
    BryteFlow creates remarkably efficient automated analytics environments that redefine data processing. By transforming Amazon S3 into a powerful analytics platform, it skillfully utilizes the AWS ecosystem to provide rapid data delivery. It works seamlessly alongside AWS Lake Formation and automates the Modern Data Architecture, enhancing both performance and productivity. Users can achieve full automation in data ingestion effortlessly through BryteFlow Ingest’s intuitive point-and-click interface, while BryteFlow XL Ingest is particularly effective for the initial ingestion of very large datasets, all without the need for any coding. Moreover, BryteFlow Blend allows users to integrate and transform data from diverse sources such as Oracle, SQL Server, Salesforce, and SAP, preparing it for advanced analytics and machine learning applications. With BryteFlow TruData, the reconciliation process between the source and destination data occurs continuously or at a user-defined frequency, ensuring data integrity. If any discrepancies or missing information arise, users receive timely alerts, enabling them to address issues swiftly, thus maintaining a smooth data flow. This comprehensive suite of tools ensures that businesses can operate with confidence in their data's accuracy and accessibility.
  • 36
    Archon Data Store Reviews
    The Archon Data Store™ is a robust and secure platform built on open-source principles, tailored for archiving and managing extensive data lakes. Its compliance capabilities and small footprint facilitate large-scale data search, processing, and analysis across structured, unstructured, and semi-structured data within an organization. By merging the essential characteristics of both data warehouses and data lakes, Archon Data Store creates a seamless and efficient platform. This integration effectively breaks down data silos, enhancing data engineering, analytics, data science, and machine learning workflows. With its focus on centralized metadata, optimized storage solutions, and distributed computing, the Archon Data Store ensures the preservation of data integrity. Additionally, its cohesive strategies for data management, security, and governance empower organizations to operate more effectively and foster innovation at a quicker pace. By offering a singular platform for both archiving and analyzing all organizational data, Archon Data Store not only delivers significant operational efficiencies but also positions your organization for future growth and agility.
  • 37
    Varada Reviews
    Varada offers a cutting-edge big data indexing solution that adeptly balances performance and cost while eliminating the need for data operations. This distinct technology acts as an intelligent acceleration layer within your data lake, which remains the central source of truth and operates within the customer's cloud infrastructure (VPC). By empowering data teams to operationalize their entire data lake, Varada facilitates data democratization while ensuring fast, interactive performance, all without requiring data relocation, modeling, or manual optimization. The key advantage lies in Varada's capability to automatically and dynamically index pertinent data, maintaining the structure and granularity of the original source. Additionally, Varada ensures that any query can keep pace with the constantly changing performance and concurrency demands of users and analytics APIs, while also maintaining predictable cost management. The platform intelligently determines which queries to accelerate and which datasets to index, while also flexibly adjusting the cluster to match demand, thereby optimizing both performance and expenses. This holistic approach to data management not only enhances operational efficiency but also allows organizations to remain agile in an ever-evolving data landscape.
  • 38
    Hydrolix Reviews

    Hydrolix

    Hydrolix

    $2,237 per month
    Hydrolix serves as a streaming data lake that integrates decoupled storage, indexed search, and stream processing, enabling real-time query performance at a terabyte scale while significantly lowering costs. CFOs appreciate the remarkable 4x decrease in data retention expenses, while product teams are thrilled to have four times more data at their disposal. You can easily activate resources when needed and scale down to zero when they are not in use. Additionally, you can optimize resource usage and performance tailored to each workload, allowing for better cost management. Imagine the possibilities for your projects when budget constraints no longer force you to limit your data access. You can ingest, enhance, and transform log data from diverse sources such as Kafka, Kinesis, and HTTP, ensuring you retrieve only the necessary information regardless of the data volume. This approach not only minimizes latency and costs but also eliminates timeouts and ineffective queries. With storage being independent from ingestion and querying processes, each aspect can scale independently to achieve both performance and budget goals. Furthermore, Hydrolix's high-density compression (HDX) often condenses 1TB of data down to an impressive 55GB, maximizing storage efficiency. By leveraging such innovative capabilities, organizations can fully harness their data potential without financial constraints.
  • 39
    IBM watsonx.data Reviews
    Leverage your data, regardless of its location, with an open and hybrid data lakehouse designed specifically for AI and analytics. Seamlessly integrate data from various sources and formats, all accessible through a unified entry point featuring a shared metadata layer. Enhance both cost efficiency and performance by aligning specific workloads with the most suitable query engines. Accelerate the discovery of generative AI insights with integrated natural-language semantic search, eliminating the need for SQL queries. Ensure that your AI applications are built on trusted data to enhance their relevance and accuracy. Maximize the potential of all your data, wherever it exists. Combining the rapidity of a data warehouse with the adaptability of a data lake, watsonx.data is engineered to facilitate the expansion of AI and analytics capabilities throughout your organization. Select the most appropriate engines tailored to your workloads to optimize your strategy. Enjoy the flexibility to manage expenses, performance, and features with access to an array of open engines, such as Presto, Presto C++, Spark Milvus, and many others, ensuring that your tools align perfectly with your data needs. This comprehensive approach allows for innovative solutions that can drive your business forward.
  • 40
    Lyftrondata Reviews
    If you're looking to establish a governed delta lake, create a data warehouse, or transition from a conventional database to a contemporary cloud data solution, Lyftrondata has you covered. You can effortlessly create and oversee all your data workloads within a single platform, automating the construction of your pipeline and warehouse. Instantly analyze your data using ANSI SQL and business intelligence or machine learning tools, and easily share your findings without the need for custom coding. This functionality enhances the efficiency of your data teams and accelerates the realization of value. You can define, categorize, and locate all data sets in one centralized location, enabling seamless sharing with peers without the complexity of coding, thus fostering insightful data-driven decisions. This capability is particularly advantageous for organizations wishing to store their data once, share it with various experts, and leverage it repeatedly for both current and future needs. In addition, you can define datasets, execute SQL transformations, or migrate your existing SQL data processing workflows to any cloud data warehouse of your choice, ensuring flexibility and scalability in your data management strategy.
  • 41
    Datametica Reviews
    At Datametica, our innovative solutions significantly reduce risks and alleviate costs, time, frustration, and anxiety throughout the data warehouse migration process to the cloud. We facilitate the transition of your current data warehouse, data lake, ETL, and enterprise business intelligence systems to your preferred cloud environment through our automated product suite. Our approach involves crafting a comprehensive migration strategy that includes workload discovery, assessment, planning, and cloud optimization. With our Eagle tool, we provide insights from the initial discovery and assessment phases of your existing data warehouse to the development of a tailored migration strategy, detailing what data needs to be moved, the optimal sequence for migration, and the anticipated timelines and expenses. This thorough overview of workloads and planning not only minimizes migration risks but also ensures that business operations remain unaffected during the transition. Furthermore, our commitment to a seamless migration process helps organizations embrace cloud technologies with confidence and clarity.
  • 42
    Cloudflare R2 Reviews
    Cloudflare R2 is a worldwide object storage solution designed for developers to efficiently store vast amounts of unstructured data while avoiding the high egress bandwidth charges that typically accompany standard cloud storage options. This service caters to various use cases, such as cloud-native application storage, web content management, podcast hosting, data lake formation, and the storage of outputs from extensive batch processes like machine learning model artifacts or datasets. R2 includes functionalities like location hints to enhance data retrieval, CORS configuration for seamless interaction with objects, public buckets for direct internet exposure of content, and bucket-scoped tokens for precise access control. By integrating with Cloudflare Workers, it allows developers to handle authentication, manage request routing, and deploy edge functions across a vast network of over 330 data centers. Furthermore, R2’s compatibility with Apache Iceberg through its data catalog converts traditional object storage into a fully operational data warehouse, eliminating the need for extensive management. This combination of features makes R2 a compelling choice for businesses looking to optimize their data storage solutions.
  • 43
    Cazena Reviews
    Cazena's Instant Data Lake significantly reduces the time needed for analytics and AI/ML from several months to just a few minutes. Utilizing its unique automated data platform, Cazena introduces a pioneering SaaS model for data lakes, requiring no operational input from users. Businesses today seek a data lake that can seamlessly accommodate all their data and essential tools for analytics, machine learning, and artificial intelligence. For a data lake to be truly effective, it must ensure secure data ingestion, provide adaptable data storage, manage access and identities, facilitate integration with various tools, and optimize performance among other features. Building cloud data lakes independently can be quite complex and typically necessitates costly specialized teams. Cazena's Instant Cloud Data Lakes are not only designed to be readily operational for data loading and analytics but also come with a fully automated setup. Supported by Cazena’s SaaS Platform, they offer ongoing operational support and self-service access through the user-friendly Cazena SaaS Console. With Cazena's Instant Data Lakes, users have a completely turnkey solution that is primed for secure data ingestion, efficient storage, and comprehensive analytics capabilities, making it an invaluable resource for enterprises looking to harness their data effectively and swiftly.
  • 44
    Cribl Search Reviews
    Cribl Search introduces an innovative search-in-place technology that allows users to effortlessly explore, discover, and analyze data that was once deemed inaccessible, directly from its source and across various cloud environments, including data secured behind APIs. Users can easily navigate through their Cribl Lake or examine data stored in prominent object storage solutions such as AWS S3, Amazon Security Lake, Azure Blob, and Google Cloud Storage, while also enriching their insights by querying multiple live API endpoints from a variety of SaaS providers. The core advantage of Cribl Search is its strategic capability to forward only the essential data to analytical systems, thus minimizing the expenses associated with storage. With built-in compatibility for platforms like Amazon Security Lake, AWS S3, Azure Blob, and Google Cloud Storage, Cribl Search offers a unique opportunity to analyze all data directly where it resides. Furthermore, it empowers users to conduct searches and analyses on data regardless of its location, whether it be debug logs at the edge or data archived in cold storage, thereby enhancing their data-driven decision-making. This versatility in data access significantly streamlines the process of gaining insights from diverse data sources.
  • 45
    Dataleyk Reviews

    Dataleyk

    Dataleyk

    €0.1 per GB
    Dataleyk serves as a secure, fully-managed cloud data platform tailored for small and medium-sized businesses. Our goal is to simplify Big Data analytics and make it accessible to everyone. Dataleyk acts as the crucial link to achieve your data-driven aspirations. The platform empowers you to quickly establish a stable, flexible, and reliable cloud data lake, requiring minimal technical expertise. You can consolidate all of your company’s data from various sources, utilize SQL for exploration, and create visualizations using your preferred BI tools or our sophisticated built-in graphs. Transform your data warehousing approach with Dataleyk, as our cutting-edge cloud data platform is designed to manage both scalable structured and unstructured data efficiently. Recognizing data as a vital asset, Dataleyk takes security seriously by encrypting all your information and providing on-demand data warehousing options. While achieving zero maintenance may seem challenging, pursuing this goal can lead to substantial improvements in delivery and transformative outcomes. Ultimately, Dataleyk is here to ensure that your data journey is as seamless and efficient as possible.