What Integrates with Automi?
Find out what Automi integrations exist in 2025. Learn what software and services currently integrate with Automi, and sort them by reviews, cost, features, and more. Below is a list of products that Automi currently integrates with:
-
1
Stable LM
Stability AI
FreeStable LM represents a significant advancement in the field of language models by leveraging our previous experience with open-source initiatives, particularly in collaboration with EleutherAI, a nonprofit research organization. This journey includes the development of notable models such as GPT-J, GPT-NeoX, and the Pythia suite, all of which were trained on The Pile open-source dataset, while many contemporary open-source models like Cerebras-GPT and Dolly-2 have drawn inspiration from this foundational work. Unlike its predecessors, Stable LM is trained on an innovative dataset that is three times the size of The Pile, encompassing a staggering 1.5 trillion tokens. We plan to share more information about this dataset in the near future. The extensive nature of this dataset enables Stable LM to excel remarkably in both conversational and coding scenarios, despite its relatively modest size of 3 to 7 billion parameters when compared to larger models like GPT-3, which boasts 175 billion parameters. Designed for versatility, Stable LM 3B is a streamlined model that can efficiently function on portable devices such as laptops and handheld gadgets, making us enthusiastic about its practical applications and mobility. Overall, the development of Stable LM marks a pivotal step towards creating more efficient and accessible language models for a wider audience. -
2
Dolly
Databricks
FreeDolly is an economical large language model that surprisingly demonstrates a notable level of instruction-following abilities similar to those seen in ChatGPT. While the Alpaca team's research revealed that cutting-edge models could be encouraged to excel in high-quality instruction adherence, our findings indicate that even older open-source models with earlier architectures can display remarkable behaviors when fine-tuned on a modest set of instructional training data. By utilizing an existing open-source model with 6 billion parameters from EleutherAI, Dolly has been slightly adjusted to enhance its ability to follow instructions, showcasing skills like brainstorming and generating text that were absent in its original form. This approach not only highlights the potential of older models but also opens new avenues for leveraging existing technologies in innovative ways. -
3
Falcon-7B
Technology Innovation Institute (TII)
FreeFalcon-7B is a causal decoder-only model comprising 7 billion parameters, developed by TII and trained on an extensive dataset of 1,500 billion tokens from RefinedWeb, supplemented with specially selected corpora, and it is licensed under Apache 2.0. What are the advantages of utilizing Falcon-7B? This model surpasses similar open-source alternatives, such as MPT-7B, StableLM, and RedPajama, due to its training on a remarkably large dataset of 1,500 billion tokens from RefinedWeb, which is further enhanced with carefully curated content, as evidenced by its standing on the OpenLLM Leaderboard. Additionally, it boasts an architecture that is finely tuned for efficient inference, incorporating technologies like FlashAttention and multiquery mechanisms. Moreover, the permissive nature of the Apache 2.0 license means users can engage in commercial applications without incurring royalties or facing significant limitations. This combination of performance and flexibility makes Falcon-7B a strong choice for developers seeking advanced modeling capabilities. -
4
Stable Diffusion
Stability AI
$0.2 per imageIn recent weeks, we have been truly grateful for the overwhelming response and have dedicated ourselves to ensuring a responsible and secure launch, using insights gained from our beta testing and community feedback for our developers to implement. Collaborating closely with the relentless legal, ethics, and technology teams at HuggingFace, along with the exceptional engineers at CoreWeave, we have created a built-in AI Safety Classifier as part of the software package. This classifier is designed to comprehend various concepts and factors during content generation, enabling it to filter out outputs that may not align with user expectations. Users can easily adjust the parameters of this feature, and we actively encourage community suggestions for enhancements. While image generation models possess significant capabilities, there remains a need for continual advancement in accurately representing our desired outcomes. Ultimately, our goal is to refine these tools further, ensuring they meet the evolving needs of users effectively. -
5
Llama 2
Meta
FreeIntroducing the next iteration of our open-source large language model, this version features model weights along with initial code for the pretrained and fine-tuned Llama language models, which span from 7 billion to 70 billion parameters. The Llama 2 pretrained models have been developed using an impressive 2 trillion tokens and offer double the context length compared to their predecessor, Llama 1. Furthermore, the fine-tuned models have been enhanced through the analysis of over 1 million human annotations. Llama 2 demonstrates superior performance against various other open-source language models across multiple external benchmarks, excelling in areas such as reasoning, coding capabilities, proficiency, and knowledge assessments. For its training, Llama 2 utilized publicly accessible online data sources, while the fine-tuned variant, Llama-2-chat, incorporates publicly available instruction datasets along with the aforementioned extensive human annotations. Our initiative enjoys strong support from a diverse array of global stakeholders who are enthusiastic about our open approach to AI, including companies that have provided valuable early feedback and are eager to collaborate using Llama 2. The excitement surrounding Llama 2 signifies a pivotal shift in how AI can be developed and utilized collectively.
- Previous
- You're on page 1
- Next