What Integrates with Astro?

Find out what Astro integrations exist in 2025. Learn what software and services currently integrate with Astro, and sort them by reviews, cost, features, and more. Below is a list of products that Astro currently integrates with:

  • 1
    DataHub Reviews
    We assist organizations, regardless of their size, in crafting, developing, and expanding solutions to effectively manage their data and unlock its full potential. At Datahub, we offer a vast array of datasets at no cost, alongside a Premium Data Service for tailored or additional data with assured updates. Datahub delivers essential and widely-utilized data in the form of high-quality, user-friendly, and open data packages. Users can securely share and elegantly display their data online, benefiting from features such as quality checks, versioning, data APIs, notifications, and integrations. Data serves as the quickest method for individuals, teams, and organizations to publish, deploy, and share structured information, all while prioritizing both power and simplicity. Streamline your data processes through our open-source framework, enabling you to store, share, and showcase your data to the world or keep it private as needed. Our offering is entirely open source, backed by professional maintenance and support, providing an end-to-end solution where all components are seamlessly integrated. We not only supply tools but also offer a standardized methodology and framework for effectively handling your data, ensuring that you can harness its value efficiently. This comprehensive approach guarantees that all users can maximize their data's impact.
  • 2
    Apache Kylin Reviews

    Apache Kylin

    Apache Software Foundation

    Apache Kylin™ is a distributed, open-source Analytical Data Warehouse designed for Big Data, aimed at delivering OLAP (Online Analytical Processing) capabilities in the modern big data landscape. By enhancing multi-dimensional cube technology and precalculation methods on platforms like Hadoop and Spark, Kylin maintains a consistent query performance, even as data volumes continue to expand. This innovation reduces query response times from several minutes to just milliseconds, effectively reintroducing online analytics into the realm of big data. Capable of processing over 10 billion rows in under a second, Kylin eliminates the delays previously associated with report generation, facilitating timely decision-making. It seamlessly integrates data stored on Hadoop with popular BI tools such as Tableau, PowerBI/Excel, MSTR, QlikSense, Hue, and SuperSet, significantly accelerating business intelligence operations on Hadoop. As a robust Analytical Data Warehouse, Kylin supports ANSI SQL queries on Hadoop/Spark and encompasses a wide array of ANSI SQL functions. Moreover, Kylin’s architecture allows it to handle thousands of simultaneous interactive queries with minimal resource usage, ensuring efficient analytics even under heavy loads. This efficiency positions Kylin as an essential tool for organizations seeking to leverage their data for strategic insights.
  • 3
    Apache Pinot Reviews

    Apache Pinot

    Apache Corporation

    Pinot is built to efficiently handle OLAP queries on static data with minimal latency. It incorporates various pluggable indexing methods, including Sorted Index, Bitmap Index, and Inverted Index. While it currently lacks support for joins, this limitation can be mitigated by utilizing Trino or PrestoDB for querying purposes. The system offers an SQL-like language that enables selection, aggregation, filtering, grouping, ordering, and distinct queries on datasets. It comprises both offline and real-time tables, with real-time tables being utilized to address segments lacking offline data. Additionally, users can tailor the anomaly detection process and notification mechanisms to accurately identify anomalies. This flexibility ensures that users can maintain data integrity and respond proactively to potential issues.
  • 4
    Great Expectations Reviews
    Great Expectations serves as a collaborative and open standard aimed at enhancing data quality. This tool assists data teams in reducing pipeline challenges through effective data testing, comprehensive documentation, and insightful profiling. It is advisable to set it up within a virtual environment for optimal performance. For those unfamiliar with pip, virtual environments, notebooks, or git, exploring the Supporting resources could be beneficial. Numerous outstanding companies are currently leveraging Great Expectations in their operations. We encourage you to review some of our case studies that highlight how various organizations have integrated Great Expectations into their data infrastructure. Additionally, Great Expectations Cloud represents a fully managed Software as a Service (SaaS) solution, and we are currently welcoming new private alpha members for this innovative offering. These alpha members will have the exclusive opportunity to access new features ahead of others and provide valuable feedback that will shape the future development of the product. This engagement will ensure that the platform continues to evolve in alignment with user needs and expectations.
  • 5
    Pantomath Reviews
    Organizations are increasingly focused on becoming more data-driven, implementing dashboards, analytics, and data pipelines throughout the contemporary data landscape. However, many organizations face significant challenges with data reliability, which can lead to misguided business decisions and a general mistrust in data that negatively affects their financial performance. Addressing intricate data challenges is often a labor-intensive process that requires collaboration among various teams, all of whom depend on informal knowledge to painstakingly reverse engineer complex data pipelines spanning multiple platforms in order to pinpoint root causes and assess their implications. Pantomath offers a solution as a data pipeline observability and traceability platform designed to streamline data operations. By continuously monitoring datasets and jobs within the enterprise data ecosystem, it provides essential context for complex data pipelines by generating automated cross-platform technical pipeline lineage. This automation not only enhances efficiency but also fosters greater confidence in data-driven decision-making across the organization.