Vertex AI
Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case.
Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
Learn more
Google AI Studio
Google AI Studio is a user-friendly, web-based workspace that offers a streamlined environment for exploring and applying cutting-edge AI technology. It acts as a powerful launchpad for diving into the latest developments in AI, making complex processes more accessible to developers of all levels.
The platform provides seamless access to Google's advanced Gemini AI models, creating an ideal space for collaboration and experimentation in building next-gen applications. With tools designed for efficient prompt crafting and model interaction, developers can quickly iterate and incorporate complex AI capabilities into their projects. The flexibility of the platform allows developers to explore a wide range of use cases and AI solutions without being constrained by technical limitations.
Google AI Studio goes beyond basic testing by enabling a deeper understanding of model behavior, allowing users to fine-tune and enhance AI performance. This comprehensive platform unlocks the full potential of AI, facilitating innovation and improving efficiency in various fields by lowering the barriers to AI development. By removing complexities, it helps users focus on building impactful solutions faster.
Learn more
Dialogflow
Dialogflow by Google Cloud is a natural-language understanding platform that allows you to create and integrate a conversational interface into your mobile, web, or device. It also makes it easy for you to integrate a bot, interactive voice response system, or other type of user interface into your app, web, or mobile application. Dialogflow allows you to create new ways for customers to interact with your product. Dialogflow can analyze input from customers in multiple formats, including text and audio (such as voice or phone calls). Dialogflow can also respond to customers via text or synthetic speech. Dialogflow CX, ES offer virtual agent services for chatbots or contact centers. Agent Assist can be used to assist human agents in contact centers that have them. Agent Assist offers real-time suggestions to human agents, even while they are talking with customers.
Learn more
Google Cloud Natural Language API
Leverage advanced machine learning techniques for thorough text analysis that can extract, interpret, and securely store textual data. With AutoML, you can create top-tier custom machine learning models effortlessly, without writing any code. Implement natural language understanding through the Natural Language API to enhance your applications. Utilize entity analysis to pinpoint and categorize various fields in documents, such as emails, chats, and social media interactions, followed by sentiment analysis to gauge customer feedback and derive actionable insights for product improvements and user experience. The Natural Language API, combined with speech-to-text capabilities, can also provide valuable insights from audio sources. Additionally, the Vision API enhances your capabilities with optical character recognition (OCR) for digitizing scanned documents. The Translation API further enables sentiment understanding across diverse languages. With custom entity extraction, you can identify specialized entities within your documents that may not be recognized by standard models, saving both time and resources on manual processing. Ultimately, you can train your own high-quality machine learning models to effectively classify, extract, and assess sentiment, making your analysis more targeted and efficient. This comprehensive approach ensures a robust understanding of textual and audio data, empowering businesses with deeper insights.
Learn more