Best Archon Data Store Alternatives in 2026
Find the top alternatives to Archon Data Store currently available. Compare ratings, reviews, pricing, and features of Archon Data Store alternatives in 2026. Slashdot lists the best Archon Data Store alternatives on the market that offer competing products that are similar to Archon Data Store. Sort through Archon Data Store alternatives below to make the best choice for your needs
-
1
Teradata VantageCloud
Teradata
992 RatingsTeradata VantageCloud: Open, Scalable Cloud Analytics for AI VantageCloud is Teradata’s cloud-native analytics and data platform designed for performance and flexibility. It unifies data from multiple sources, supports complex analytics at scale, and makes it easier to deploy AI and machine learning models in production. With built-in support for multi-cloud and hybrid deployments, VantageCloud lets organizations manage data across AWS, Azure, Google Cloud, and on-prem environments without vendor lock-in. Its open architecture integrates with modern data tools and standard formats, giving developers and data teams freedom to innovate while keeping costs predictable. -
2
BigQuery is a serverless, multicloud data warehouse that makes working with all types of data effortless, allowing you to focus on extracting valuable business insights quickly. As a central component of Google’s data cloud, it streamlines data integration, enables cost-effective and secure scaling of analytics, and offers built-in business intelligence for sharing detailed data insights. With a simple SQL interface, it also supports training and deploying machine learning models, helping to foster data-driven decision-making across your organization. Its robust performance ensures that businesses can handle increasing data volumes with minimal effort, scaling to meet the needs of growing enterprises. Gemini within BigQuery brings AI-powered tools that enhance collaboration and productivity, such as code recommendations, visual data preparation, and intelligent suggestions aimed at improving efficiency and lowering costs. The platform offers an all-in-one environment with SQL, a notebook, and a natural language-based canvas interface, catering to data professionals of all skill levels. This cohesive workspace simplifies the entire analytics journey, enabling teams to work faster and more efficiently.
-
3
AnalyticsCreator
AnalyticsCreator
46 RatingsAccelerate your data journey with AnalyticsCreator—a metadata-driven data warehouse automation solution purpose-built for the Microsoft data ecosystem. AnalyticsCreator simplifies the design, development, and deployment of modern data architectures, including dimensional models, data marts, data vaults, or blended modeling approaches tailored to your business needs. Seamlessly integrate with Microsoft SQL Server, Azure Synapse Analytics, Microsoft Fabric (including OneLake and SQL Endpoint Lakehouse environments), and Power BI. AnalyticsCreator automates ELT pipeline creation, data modeling, historization, and semantic layer generation—helping reduce tool sprawl and minimizing manual SQL coding. Designed to support CI/CD pipelines, AnalyticsCreator connects easily with Azure DevOps and GitHub for version-controlled deployments across development, test, and production environments. This ensures faster, error-free releases while maintaining governance and control across your entire data engineering workflow. Key features include automated documentation, end-to-end data lineage tracking, and adaptive schema evolution—enabling teams to manage change, reduce risk, and maintain auditability at scale. AnalyticsCreator empowers agile data engineering by enabling rapid prototyping and production-grade deployments for Microsoft-centric data initiatives. By eliminating repetitive manual tasks and deployment risks, AnalyticsCreator allows your team to focus on delivering actionable business insights—accelerating time-to-value for your data products and analytics initiatives. -
4
Snowflake offers a unified AI Data Cloud platform that transforms how businesses store, analyze, and leverage data by eliminating silos and simplifying architectures. It features interoperable storage that enables seamless access to diverse datasets at massive scale, along with an elastic compute engine that delivers leading performance for a wide range of workloads. Snowflake Cortex AI integrates secure access to cutting-edge large language models and AI services, empowering enterprises to accelerate AI-driven insights. The platform’s cloud services automate and streamline resource management, reducing complexity and cost. Snowflake also offers Snowgrid, which securely connects data and applications across multiple regions and cloud providers for a consistent experience. Their Horizon Catalog provides built-in governance to manage security, privacy, compliance, and access control. Snowflake Marketplace connects users to critical business data and apps to foster collaboration within the AI Data Cloud network. Serving over 11,000 customers worldwide, Snowflake supports industries from healthcare and finance to retail and telecom.
-
5
Domo
Domo
49 RatingsDomo puts data to work for everyone so they can multiply their impact on the business. Underpinned by a secure data foundation, our cloud-native data experience platform makes data visible and actionable with user-friendly dashboards and apps. Domo helps companies optimize critical business processes at scale and in record time to spark bold curiosity that powers exponential business results. -
6
Databricks Data Intelligence Platform
Databricks
The Databricks Data Intelligence Platform empowers every member of your organization to leverage data and artificial intelligence effectively. Constructed on a lakehouse architecture, it establishes a cohesive and transparent foundation for all aspects of data management and governance, enhanced by a Data Intelligence Engine that recognizes the distinct characteristics of your data. Companies that excel across various sectors will be those that harness the power of data and AI. Covering everything from ETL processes to data warehousing and generative AI, Databricks facilitates the streamlining and acceleration of your data and AI objectives. By merging generative AI with the integrative advantages of a lakehouse, Databricks fuels a Data Intelligence Engine that comprehends the specific semantics of your data. This functionality enables the platform to optimize performance automatically and manage infrastructure in a manner tailored to your organization's needs. Additionally, the Data Intelligence Engine is designed to grasp the unique language of your enterprise, making the search and exploration of new data as straightforward as posing a question to a colleague, thus fostering collaboration and efficiency. Ultimately, this innovative approach transforms the way organizations interact with their data, driving better decision-making and insights. -
7
Dremio
Dremio
Dremio provides lightning-fast queries as well as a self-service semantic layer directly to your data lake storage. No data moving to proprietary data warehouses, and no cubes, aggregation tables, or extracts. Data architects have flexibility and control, while data consumers have self-service. Apache Arrow and Dremio technologies such as Data Reflections, Columnar Cloud Cache(C3), and Predictive Pipelining combine to make it easy to query your data lake storage. An abstraction layer allows IT to apply security and business meaning while allowing analysts and data scientists access data to explore it and create new virtual datasets. Dremio's semantic layers is an integrated searchable catalog that indexes all your metadata so business users can make sense of your data. The semantic layer is made up of virtual datasets and spaces, which are all searchable and indexed. -
8
Qlik Compose
Qlik
Qlik Compose for Data Warehouses offers a contemporary solution that streamlines and enhances the process of establishing and managing data warehouses. This tool not only automates the design of the warehouse but also generates ETL code and implements updates swiftly, all while adhering to established best practices and reliable design frameworks. By utilizing Qlik Compose for Data Warehouses, organizations can significantly cut down on the time, expense, and risk associated with BI initiatives, regardless of whether they are deployed on-premises or in the cloud. On the other hand, Qlik Compose for Data Lakes simplifies the creation of analytics-ready datasets by automating data pipeline processes. By handling data ingestion, schema setup, and ongoing updates, companies can achieve a quicker return on investment from their data lake resources, further enhancing their data strategy. Ultimately, these tools empower organizations to maximize their data potential efficiently. -
9
DataLakeHouse.io
DataLakeHouse.io
$99DataLakeHouse.io Data Sync allows users to replicate and synchronize data from operational systems (on-premises and cloud-based SaaS), into destinations of their choice, primarily Cloud Data Warehouses. DLH.io is a tool for marketing teams, but also for any data team in any size organization. It enables business cases to build single source of truth data repositories such as dimensional warehouses, data vaults 2.0, and machine learning workloads. Use cases include technical and functional examples, including: ELT and ETL, Data Warehouses, Pipelines, Analytics, AI & Machine Learning and Data, Marketing and Sales, Retail and FinTech, Restaurants, Manufacturing, Public Sector and more. DataLakeHouse.io has a mission: to orchestrate the data of every organization, especially those who wish to become data-driven or continue their data-driven strategy journey. DataLakeHouse.io, aka DLH.io, allows hundreds of companies manage their cloud data warehousing solutions. -
10
BigLake
Google
$5 per TBBigLake serves as a storage engine that merges the functionalities of data warehouses and lakes, allowing BigQuery and open-source frameworks like Spark to efficiently access data while enforcing detailed access controls. It enhances query performance across various multi-cloud storage systems and supports open formats, including Apache Iceberg. Users can maintain a single version of data, ensuring consistent features across both data warehouses and lakes. With its capacity for fine-grained access management and comprehensive governance over distributed data, BigLake seamlessly integrates with open-source analytics tools and embraces open data formats. This solution empowers users to conduct analytics on distributed data, regardless of its storage location or method, while selecting the most suitable analytics tools, whether they be open-source or cloud-native, all based on a singular data copy. Additionally, it offers fine-grained access control for open-source engines such as Apache Spark, Presto, and Trino, along with formats like Parquet. As a result, users can execute high-performing queries on data lakes driven by BigQuery. Furthermore, BigLake collaborates with Dataplex, facilitating scalable management and logical organization of data assets. This integration not only enhances operational efficiency but also simplifies the complexities of data governance in large-scale environments. -
11
Mozart Data
Mozart Data
Mozart Data is the all-in-one modern data platform for consolidating, organizing, and analyzing your data. Set up a modern data stack in an hour, without any engineering. Start getting more out of your data and making data-driven decisions today. -
12
Delta Lake
Delta Lake
Delta Lake serves as an open-source storage layer that integrates ACID transactions into Apache Spark™ and big data operations. In typical data lakes, multiple pipelines operate simultaneously to read and write data, which often forces data engineers to engage in a complex and time-consuming effort to maintain data integrity because transactional capabilities are absent. By incorporating ACID transactions, Delta Lake enhances data lakes and ensures a high level of consistency with its serializability feature, the most robust isolation level available. For further insights, refer to Diving into Delta Lake: Unpacking the Transaction Log. In the realm of big data, even metadata can reach substantial sizes, and Delta Lake manages metadata with the same significance as the actual data, utilizing Spark's distributed processing strengths for efficient handling. Consequently, Delta Lake is capable of managing massive tables that can scale to petabytes, containing billions of partitions and files without difficulty. Additionally, Delta Lake offers data snapshots, which allow developers to retrieve and revert to previous data versions, facilitating audits, rollbacks, or the replication of experiments while ensuring data reliability and consistency across the board. -
13
A data lakehouse represents a contemporary, open architecture designed for storing, comprehending, and analyzing comprehensive data sets. It merges the robust capabilities of traditional data warehouses with the extensive flexibility offered by widely used open-source data technologies available today. Constructing a data lakehouse can be accomplished on Oracle Cloud Infrastructure (OCI), allowing seamless integration with cutting-edge AI frameworks and pre-configured AI services such as Oracle’s language processing capabilities. With Data Flow, a serverless Spark service, users can concentrate on their Spark workloads without needing to manage underlying infrastructure. Many Oracle clients aim to develop sophisticated analytics powered by machine learning, applied to their Oracle SaaS data or other SaaS data sources. Furthermore, our user-friendly data integration connectors streamline the process of establishing a lakehouse, facilitating thorough analysis of all data in conjunction with your SaaS data and significantly accelerating the time to achieve solutions. This innovative approach not only optimizes data management but also enhances analytical capabilities for businesses looking to leverage their data effectively.
-
14
IBM watsonx.data
IBM
Leverage your data, regardless of its location, with an open and hybrid data lakehouse designed specifically for AI and analytics. Seamlessly integrate data from various sources and formats, all accessible through a unified entry point featuring a shared metadata layer. Enhance both cost efficiency and performance by aligning specific workloads with the most suitable query engines. Accelerate the discovery of generative AI insights with integrated natural-language semantic search, eliminating the need for SQL queries. Ensure that your AI applications are built on trusted data to enhance their relevance and accuracy. Maximize the potential of all your data, wherever it exists. Combining the rapidity of a data warehouse with the adaptability of a data lake, watsonx.data is engineered to facilitate the expansion of AI and analytics capabilities throughout your organization. Select the most appropriate engines tailored to your workloads to optimize your strategy. Enjoy the flexibility to manage expenses, performance, and features with access to an array of open engines, such as Presto, Presto C++, Spark Milvus, and many others, ensuring that your tools align perfectly with your data needs. This comprehensive approach allows for innovative solutions that can drive your business forward. -
15
Openbridge
Openbridge
$149 per monthDiscover how to enhance sales growth effortlessly by utilizing automated data pipelines that connect seamlessly to data lakes or cloud storage solutions without the need for coding. This adaptable platform adheres to industry standards, enabling the integration of sales and marketing data to generate automated insights for more intelligent expansion. Eliminate the hassle and costs associated with cumbersome manual data downloads. You’ll always have a clear understanding of your expenses, only paying for the services you actually use. Empower your tools with rapid access to data that is ready for analytics. Our certified developers prioritize security by exclusively working with official APIs. You can quickly initiate data pipelines sourced from widely-used platforms. With pre-built, pre-transformed pipelines at your disposal, you can unlock crucial data from sources like Amazon Vendor Central, Amazon Seller Central, Instagram Stories, Facebook, Amazon Advertising, Google Ads, and more. The processes for data ingestion and transformation require no coding, allowing teams to swiftly and affordably harness the full potential of their data. Your information is consistently safeguarded and securely stored in a reliable, customer-controlled data destination such as Databricks or Amazon Redshift, ensuring peace of mind as you manage your data assets. This streamlined approach not only saves time but also enhances overall operational efficiency. -
16
Lyftrondata
Lyftrondata
If you're looking to establish a governed delta lake, create a data warehouse, or transition from a conventional database to a contemporary cloud data solution, Lyftrondata has you covered. You can effortlessly create and oversee all your data workloads within a single platform, automating the construction of your pipeline and warehouse. Instantly analyze your data using ANSI SQL and business intelligence or machine learning tools, and easily share your findings without the need for custom coding. This functionality enhances the efficiency of your data teams and accelerates the realization of value. You can define, categorize, and locate all data sets in one centralized location, enabling seamless sharing with peers without the complexity of coding, thus fostering insightful data-driven decisions. This capability is particularly advantageous for organizations wishing to store their data once, share it with various experts, and leverage it repeatedly for both current and future needs. In addition, you can define datasets, execute SQL transformations, or migrate your existing SQL data processing workflows to any cloud data warehouse of your choice, ensuring flexibility and scalability in your data management strategy. -
17
Onehouse
Onehouse
Introducing a unique cloud data lakehouse that is entirely managed and capable of ingesting data from all your sources within minutes, while seamlessly accommodating every query engine at scale, all at a significantly reduced cost. This platform enables ingestion from both databases and event streams at terabyte scale in near real-time, offering the ease of fully managed pipelines. Furthermore, you can execute queries using any engine, catering to diverse needs such as business intelligence, real-time analytics, and AI/ML applications. By adopting this solution, you can reduce your expenses by over 50% compared to traditional cloud data warehouses and ETL tools, thanks to straightforward usage-based pricing. Deployment is swift, taking just minutes, without the burden of engineering overhead, thanks to a fully managed and highly optimized cloud service. Consolidate your data into a single source of truth, eliminating the necessity of duplicating data across various warehouses and lakes. Select the appropriate table format for each task, benefitting from seamless interoperability between Apache Hudi, Apache Iceberg, and Delta Lake. Additionally, quickly set up managed pipelines for change data capture (CDC) and streaming ingestion, ensuring that your data architecture is both agile and efficient. This innovative approach not only streamlines your data processes but also enhances decision-making capabilities across your organization. -
18
CelerData Cloud
CelerData
CelerData is an advanced SQL engine designed to enable high-performance analytics directly on data lakehouses, removing the necessity for conventional data warehouse ingestion processes. It achieves impressive query speeds in mere seconds, facilitates on-the-fly JOIN operations without incurring expensive denormalization, and streamlines system architecture by enabling users to execute intensive workloads on open format tables. Based on the open-source StarRocks engine, this platform surpasses older query engines like Trino, ClickHouse, and Apache Druid in terms of latency, concurrency, and cost efficiency. With its cloud-managed service operating within your own VPC, users maintain control over their infrastructure and data ownership while CelerData manages the upkeep and optimization tasks. This platform is poised to support real-time OLAP, business intelligence, and customer-facing analytics applications, and it has garnered the trust of major enterprise clients, such as Pinterest, Coinbase, and Fanatics, who have realized significant improvements in latency and cost savings. Beyond enhancing performance, CelerData’s capabilities allow businesses to harness their data more effectively, ensuring they remain competitive in a data-driven landscape. -
19
Cloudera
Cloudera
Oversee and protect the entire data lifecycle from the Edge to AI across any cloud platform or data center. Functions seamlessly within all leading public cloud services as well as private clouds, providing a uniform public cloud experience universally. Unifies data management and analytical processes throughout the data lifecycle, enabling access to data from any location. Ensures the implementation of security measures, regulatory compliance, migration strategies, and metadata management in every environment. With a focus on open source, adaptable integrations, and compatibility with various data storage and computing systems, it enhances the accessibility of self-service analytics. This enables users to engage in integrated, multifunctional analytics on well-managed and protected business data, while ensuring a consistent experience across on-premises, hybrid, and multi-cloud settings. Benefit from standardized data security, governance, lineage tracking, and control, all while delivering the robust and user-friendly cloud analytics solutions that business users need, effectively reducing the reliance on unauthorized IT solutions. Additionally, these capabilities foster a collaborative environment where data-driven decision-making is streamlined and more efficient. -
20
Alibaba Cloud Data Lake Formation
Alibaba Cloud
A data lake serves as a comprehensive repository designed for handling extensive data and artificial intelligence operations, accommodating both structured and unstructured data at any volume. It is essential for organizations looking to harness the power of Data Lake Formation (DLF), which simplifies the creation of a cloud-native data lake environment. DLF integrates effortlessly with various computing frameworks while enabling centralized management of metadata and robust enterprise-level permission controls. It systematically gathers structured, semi-structured, and unstructured data, ensuring substantial storage capabilities, and employs a design that decouples computing resources from storage solutions. This architecture allows for on-demand resource planning at minimal costs, significantly enhancing data processing efficiency to adapt to swiftly evolving business needs. Furthermore, DLF is capable of automatically discovering and consolidating metadata from multiple sources, effectively addressing issues related to data silos. Ultimately, this functionality streamlines data management, making it easier for organizations to leverage their data assets. -
21
e6data
e6data
The market experiences limited competition as a result of significant entry barriers, specialized expertise, substantial capital requirements, and extended time-to-market. Moreover, current platforms offer similar pricing and performance, which diminishes the motivation for users to transition. Transitioning from one SQL dialect to another can take months of intensive work. There is a demand for format-independent computing that can seamlessly work with all major open standards. Data leaders in enterprises are currently facing an extraordinary surge in the need for data intelligence. They are taken aback to discover that a mere 10% of their most demanding, compute-heavy tasks account for 80% of the costs, engineering resources, and stakeholder grievances. Regrettably, these workloads are also essential and cannot be neglected. e6data enhances the return on investment for a company's current data platforms and infrastructure. Notably, e6data’s format-agnostic computing stands out for its remarkable efficiency and performance across various leading data lakehouse table formats, thereby providing a significant advantage in optimizing enterprise operations. This innovative solution positions organizations to better manage their data-driven demands while maximizing their existing resources. -
22
Sesame Software
Sesame Software
When you have the expertise of an enterprise partner combined with a scalable, easy-to-use data management suite, you can take back control of your data, access it from anywhere, ensure security and compliance, and unlock its power to grow your business. Why Use Sesame Software? Relational Junction builds, populates, and incrementally refreshes your data automatically. Enhance Data Quality - Convert data from multiple sources into a consistent format – leading to more accurate data, which provides the basis for solid decisions. Gain Insights - Automate the update of information into a central location, you can use your in-house BI tools to build useful reports to avoid costly mistakes. Fixed Price - Avoid high consumption costs with yearly fixed prices and multi-year discounts no matter your data volume. -
23
FutureAnalytica
FutureAnalytica
Introducing the world’s pioneering end-to-end platform designed for all your AI-driven innovation requirements—from data cleansing and organization to the creation and deployment of sophisticated data science models, as well as the integration of advanced analytics algorithms featuring built-in Recommendation AI; our platform also simplifies outcome interpretation with intuitive visualization dashboards and employs Explainable AI to trace the origins of outcomes. FutureAnalytica delivers a comprehensive, seamless data science journey, equipped with essential attributes such as a powerful Data Lakehouse, an innovative AI Studio, an inclusive AI Marketplace, and a top-notch data science support team available as needed. This unique platform is specifically tailored to streamline your efforts, reduce costs, and save time throughout your data science and AI endeavors. Start by engaging with our leadership team, and expect a swift technology evaluation within just 1 to 3 days. In a span of 10 to 18 days, you can construct fully automated, ready-to-integrate AI solutions using FutureAnalytica’s advanced platform, paving the way for a transformative approach to data management and analysis. Embrace the future of AI innovation with us today! -
24
BryteFlow
BryteFlow
BryteFlow creates remarkably efficient automated analytics environments that redefine data processing. By transforming Amazon S3 into a powerful analytics platform, it skillfully utilizes the AWS ecosystem to provide rapid data delivery. It works seamlessly alongside AWS Lake Formation and automates the Modern Data Architecture, enhancing both performance and productivity. Users can achieve full automation in data ingestion effortlessly through BryteFlow Ingest’s intuitive point-and-click interface, while BryteFlow XL Ingest is particularly effective for the initial ingestion of very large datasets, all without the need for any coding. Moreover, BryteFlow Blend allows users to integrate and transform data from diverse sources such as Oracle, SQL Server, Salesforce, and SAP, preparing it for advanced analytics and machine learning applications. With BryteFlow TruData, the reconciliation process between the source and destination data occurs continuously or at a user-defined frequency, ensuring data integrity. If any discrepancies or missing information arise, users receive timely alerts, enabling them to address issues swiftly, thus maintaining a smooth data flow. This comprehensive suite of tools ensures that businesses can operate with confidence in their data's accuracy and accessibility. -
25
Data Lakes on AWS
Amazon
Numerous customers of Amazon Web Services (AWS) seek a data storage and analytics solution that surpasses the agility and flexibility of conventional data management systems. A data lake has emerged as an innovative and increasingly favored method for storing and analyzing data, as it enables organizations to handle various data types from diverse sources, all within a unified repository that accommodates both structured and unstructured data. The AWS Cloud supplies essential components necessary for customers to create a secure, adaptable, and economical data lake. These components comprise AWS managed services designed to assist in the ingestion, storage, discovery, processing, and analysis of both structured and unstructured data. To aid our customers in constructing their data lakes, AWS provides a comprehensive data lake solution, which serves as an automated reference implementation that establishes a highly available and cost-efficient data lake architecture on the AWS Cloud, complete with an intuitive console for searching and requesting datasets. Furthermore, this solution not only enhances data accessibility but also streamlines the overall data management process for organizations. -
26
Cribl Lake
Cribl
Experience the freedom of storage that allows data to flow freely without restrictions. With a managed data lake, you can quickly set up your system and start utilizing data without needing to be an expert in the field. Cribl Lake ensures you won’t be overwhelmed by data, enabling effortless storage, management, policy enforcement, and accessibility whenever necessary. Embrace the future with open formats while benefiting from consistent retention, security, and access control policies. Let Cribl take care of the complex tasks, transforming data into a resource that delivers value to your teams and tools. With Cribl Lake, you can be operational in minutes instead of months, thanks to seamless automated provisioning and ready-to-use integrations. Enhance your workflows using Stream and Edge for robust data ingestion and routing capabilities. Cribl Search simplifies your querying process, providing a unified approach regardless of where your data resides, so you can extract insights without unnecessary delays. Follow a straightforward route to gather and maintain data for the long haul while easily meeting legal and business obligations for data retention by setting specific retention timelines. By prioritizing user-friendliness and efficiency, Cribl Lake equips you with the tools needed to maximize data utility and compliance. -
27
Upsolver
Upsolver
Upsolver makes it easy to create a governed data lake, manage, integrate, and prepare streaming data for analysis. Only use auto-generated schema on-read SQL to create pipelines. A visual IDE that makes it easy to build pipelines. Add Upserts to data lake tables. Mix streaming and large-scale batch data. Automated schema evolution and reprocessing of previous state. Automated orchestration of pipelines (no Dags). Fully-managed execution at scale Strong consistency guarantee over object storage Nearly zero maintenance overhead for analytics-ready information. Integral hygiene for data lake tables, including columnar formats, partitioning and compaction, as well as vacuuming. Low cost, 100,000 events per second (billions every day) Continuous lock-free compaction to eliminate the "small file" problem. Parquet-based tables are ideal for quick queries. -
28
Azure Data Lake Storage
Microsoft
Break down data silos through a unified storage solution that effectively optimizes expenses by employing tiered storage and comprehensive policy management. Enhance data authentication with Azure Active Directory (Azure AD) alongside role-based access control (RBAC), while bolstering data protection with features such as encryption at rest and advanced threat protection. This approach ensures a highly secure environment with adaptable mechanisms for safeguarding access, encryption, and network-level governance. Utilizing a singular storage platform, you can seamlessly ingest, process, and visualize data while supporting prevalent analytics frameworks. Cost efficiency is further achieved through the independent scaling of storage and compute resources, lifecycle policy management, and object-level tiering. With Azure's extensive global infrastructure, you can effortlessly meet diverse capacity demands and manage data efficiently. Additionally, conduct large-scale analytical queries with consistently high performance, ensuring that your data management meets both current and future needs. -
29
Talend Data Fabric
Qlik
Talend Data Fabric's cloud services are able to efficiently solve all your integration and integrity problems -- on-premises or in cloud, from any source, at any endpoint. Trusted data delivered at the right time for every user. With an intuitive interface and minimal coding, you can easily and quickly integrate data, files, applications, events, and APIs from any source to any location. Integrate quality into data management to ensure compliance with all regulations. This is possible through a collaborative, pervasive, and cohesive approach towards data governance. High quality, reliable data is essential to make informed decisions. It must be derived from real-time and batch processing, and enhanced with market-leading data enrichment and cleaning tools. Make your data more valuable by making it accessible internally and externally. Building APIs is easy with the extensive self-service capabilities. This will improve customer engagement. -
30
Querona
YouNeedIT
We make BI and Big Data analytics easier and more efficient. Our goal is to empower business users, make BI specialists and always-busy business more independent when solving data-driven business problems. Querona is a solution for those who have ever been frustrated by a lack in data, slow or tedious report generation, or a long queue to their BI specialist. Querona has a built-in Big Data engine that can handle increasing data volumes. Repeatable queries can be stored and calculated in advance. Querona automatically suggests improvements to queries, making optimization easier. Querona empowers data scientists and business analysts by giving them self-service. They can quickly create and prototype data models, add data sources, optimize queries, and dig into raw data. It is possible to use less IT. Users can now access live data regardless of where it is stored. Querona can cache data if databases are too busy to query live. -
31
ELCA Smart Data Lake Builder
ELCA Group
FreeTraditional Data Lakes frequently simplify their role to merely serving as inexpensive raw data repositories, overlooking crucial elements such as data transformation, quality assurance, and security protocols. Consequently, data scientists often find themselves dedicating as much as 80% of their time to the processes of data acquisition, comprehension, and cleansing, which delays their ability to leverage their primary skills effectively. Furthermore, the establishment of traditional Data Lakes tends to occur in isolation by various departments, each utilizing different standards and tools, complicating the implementation of cohesive analytical initiatives. In contrast, Smart Data Lakes address these challenges by offering both architectural and methodological frameworks, alongside a robust toolset designed to create a high-quality data infrastructure. Essential to any contemporary analytics platform, Smart Data Lakes facilitate seamless integration with popular Data Science tools and open-source technologies, including those used for artificial intelligence and machine learning applications. Their cost-effective and scalable storage solutions accommodate a wide range of data types, including unstructured data and intricate data models, thereby enhancing overall analytical capabilities. This adaptability not only streamlines operations but also fosters collaboration across different departments, ultimately leading to more informed decision-making. -
32
SwiftStack
SwiftStack
SwiftStack is a versatile data storage and management solution designed for applications and workflows that rely heavily on data, enabling effortless access to information across both private and public infrastructures. Its on-premises offering, SwiftStack Storage, is a scalable and geographically dispersed object and file storage solution that can begin with tens of terabytes and scale to hundreds of petabytes. By integrating your current enterprise data into the SwiftStack platform, you can enhance accessibility for your contemporary cloud-native applications without the need for another extensive storage migration, utilizing your existing tier 1 storage effectively. SwiftStack 1space further optimizes data management by distributing information across various clouds, both public and private, based on operator-defined policies, thereby bringing applications and users closer to their needed data. This system creates a unified addressable namespace, ensuring that data movement within the platform remains seamless and transparent to both applications and users alike, enhancing the overall efficiency of data access and management. Moreover, this approach simplifies the complexities associated with data handling in multi-cloud environments, allowing organizations to focus on their core operations. -
33
AtScale
AtScale
AtScale streamlines and speeds up business intelligence processes, leading to quicker insights, improved decision-making, and enhanced returns on your cloud analytics investments. It removes the need for tedious data engineering tasks, such as gathering, maintaining, and preparing data for analysis. By centralizing business definitions, AtScale ensures that KPI reporting remains consistent across various BI tools. The platform not only accelerates the time it takes to gain insights from data but also optimizes the management of cloud computing expenses. Additionally, it allows organizations to utilize their existing data security protocols for analytics, regardless of where the data is stored. AtScale’s Insights workbooks and models enable users to conduct Cloud OLAP multidimensional analysis on datasets sourced from numerous providers without the requirement for data preparation or engineering. With user-friendly built-in dimensions and measures, businesses can swiftly extract valuable insights that inform their strategic decisions, enhancing their overall operational efficiency. This capability empowers teams to focus on analysis rather than data handling, leading to sustained growth and innovation. -
34
Narrative
Narrative
$0With your own data shop, create new revenue streams from the data you already have. Narrative focuses on the fundamental principles that make buying or selling data simpler, safer, and more strategic. You must ensure that the data you have access to meets your standards. It is important to know who and how the data was collected. Access new supply and demand easily for a more agile, accessible data strategy. You can control your entire data strategy with full end-to-end access to all inputs and outputs. Our platform automates the most labor-intensive and time-consuming aspects of data acquisition so that you can access new data sources in days instead of months. You'll only ever have to pay for what you need with filters, budget controls and automatic deduplication. -
35
Hydrolix
Hydrolix
$2,237 per monthHydrolix serves as a streaming data lake that integrates decoupled storage, indexed search, and stream processing, enabling real-time query performance at a terabyte scale while significantly lowering costs. CFOs appreciate the remarkable 4x decrease in data retention expenses, while product teams are thrilled to have four times more data at their disposal. You can easily activate resources when needed and scale down to zero when they are not in use. Additionally, you can optimize resource usage and performance tailored to each workload, allowing for better cost management. Imagine the possibilities for your projects when budget constraints no longer force you to limit your data access. You can ingest, enhance, and transform log data from diverse sources such as Kafka, Kinesis, and HTTP, ensuring you retrieve only the necessary information regardless of the data volume. This approach not only minimizes latency and costs but also eliminates timeouts and ineffective queries. With storage being independent from ingestion and querying processes, each aspect can scale independently to achieve both performance and budget goals. Furthermore, Hydrolix's high-density compression (HDX) often condenses 1TB of data down to an impressive 55GB, maximizing storage efficiency. By leveraging such innovative capabilities, organizations can fully harness their data potential without financial constraints. -
36
Amazon Security Lake
Amazon
$0.75 per GB per monthAmazon Security Lake seamlessly consolidates security information from various AWS environments, SaaS platforms, on-premises systems, and cloud sources into a specialized data lake within your account. This service enables you to gain a comprehensive insight into your security data across the entire organization, enhancing the safeguarding of your workloads, applications, and data. By utilizing the Open Cybersecurity Schema Framework (OCSF), which is an open standard, Security Lake effectively normalizes and integrates security data from AWS along with a wide array of enterprise security data sources. You have the flexibility to use your preferred analytics tools to examine your security data while maintaining full control and ownership over it. Furthermore, you can centralize visibility into data from both cloud and on-premises sources across your AWS accounts and Regions. This approach not only streamlines your data management at scale but also ensures consistency in your security data by adhering to an open standard, allowing for more efficient and effective security practices across your organization. Ultimately, this solution empowers organizations to respond to security threats more swiftly and intelligently. -
37
Apache Doris
The Apache Software Foundation
FreeApache Doris serves as a cutting-edge data warehouse tailored for real-time analytics, enabling exceptionally rapid analysis of data at scale. It features both push-based micro-batch and pull-based streaming data ingestion that occurs within a second, alongside a storage engine capable of real-time upserts, appends, and pre-aggregation. With its columnar storage architecture, MPP design, cost-based query optimization, and vectorized execution engine, it is optimized for handling high-concurrency and high-throughput queries efficiently. Moreover, it allows for federated querying across various data lakes, including Hive, Iceberg, and Hudi, as well as relational databases such as MySQL and PostgreSQL. Doris supports complex data types like Array, Map, and JSON, and includes a Variant data type that facilitates automatic inference for JSON structures, along with advanced text search capabilities through NGram bloomfilters and inverted indexes. Its distributed architecture ensures linear scalability and incorporates workload isolation and tiered storage to enhance resource management. Additionally, it accommodates both shared-nothing clusters and the separation of storage from compute resources, providing flexibility in deployment and management. -
38
Peliqan
Peliqan
$199Peliqan.io provides a data platform that is all-in-one for business teams, IT service providers, startups and scale-ups. No data engineer required. Connect to databases, data warehouses, and SaaS applications. In a spreadsheet interface, you can explore and combine data. Business users can combine multiple data sources, clean data, edit personal copies, and apply transformations. Power users can use SQL on anything, and developers can use Low-code to create interactive data apps, implement writing backs and apply machine intelligence. -
39
Azure Blob Storage
Microsoft
$0.00099Azure Blob Storage offers a highly scalable and secure object storage solution tailored for a variety of applications, including cloud-native workloads, data lakes, high-performance computing, archives, and machine learning projects. It enables users to construct data lakes that facilitate analytics while also serving as a robust storage option for developing powerful mobile and cloud-native applications. With tiered storage options, users can effectively manage costs associated with long-term data retention while having the flexibility to scale up resources for intensive computing and machine learning tasks. Designed from the ground up, Blob storage meets the stringent requirements for scale, security, and availability that developers of mobile, web, and cloud-native applications demand. It serves as a foundational element for serverless architectures, such as Azure Functions, further enhancing its utility. Additionally, Blob storage is compatible with a wide range of popular development frameworks, including Java, .NET, Python, and Node.js, and it uniquely offers a premium SSD-based object storage tier, making it ideal for low-latency and interactive applications. This versatility allows developers to optimize their workflows and improve application performance across various platforms and environments. -
40
Lentiq
Lentiq
Lentiq offers a collaborative data lake as a service that empowers small teams to achieve significant results. It allows users to swiftly execute data science, machine learning, and data analysis within the cloud platform of their choice. With Lentiq, teams can seamlessly ingest data in real time, process and clean it, and share their findings effortlessly. This platform also facilitates the building, training, and internal sharing of models, enabling data teams to collaborate freely and innovate without limitations. Data lakes serve as versatile storage and processing environments, equipped with machine learning, ETL, and schema-on-read querying features, among others. If you’re delving into the realm of data science, a data lake is essential for your success. In today’s landscape, characterized by the Post-Hadoop era, large centralized data lakes have become outdated. Instead, Lentiq introduces data pools—interconnected mini-data lakes across multiple clouds—that work harmoniously to provide a secure, stable, and efficient environment for data science endeavors. This innovative approach enhances the overall agility and effectiveness of data-driven projects. -
41
iomete
iomete
Freeiomete platform combines a powerful lakehouse with an advanced data catalog, SQL editor and BI, providing you with everything you need to become data-driven. -
42
Oracle Cloud Infrastructure Object Storage
Oracle
$0.0255 per monthOracle Cloud Infrastructure (OCI) Object Storage allows users to securely keep any data type in its original format. Thanks to its inherent redundancy, OCI Object Storage is perfectly suited for developing contemporary applications that demand both scalability and adaptability, making it possible to merge various data sources for purposes such as analytics, backups, or archiving. Many businesses rely on OCI Object Storage to house their data and backups, which operates on resilient hardware designed for enhanced durability. The system actively checks the integrity of the data, promptly identifying and correcting any corruption by generating a new copy of the affected data. For long-term storage requirements, such as those driven by compliance, auditing needs, or log data, OCI Archive Storage offers the same API functionality as Object Storage, ensuring seamless integration and setup while being cost-effective at just one-tenth of the price. Moreover, the data within this system is continuously monitored for integrity, automatically repaired when necessary, and secured through encryption while at rest, reinforcing the overall security and reliability of the storage solution. This robust approach to data management ensures that enterprises can confidently store and access their vital information without worrying about data loss or corruption. -
43
Azure Data Lake
Microsoft
Azure Data Lake offers a comprehensive set of features designed to facilitate the storage of data in any form, size, and speed for developers, data scientists, and analysts alike, enabling a wide range of processing and analytics across various platforms and programming languages. By simplifying the ingestion and storage of data, it accelerates the process of launching batch, streaming, and interactive analytics. Additionally, Azure Data Lake is compatible with existing IT frameworks for identity, management, and security, which streamlines data management and governance. Its seamless integration with operational stores and data warehouses allows for the extension of current data applications without disruption. Leveraging insights gained from working with enterprise clients and managing some of the world's largest processing and analytics tasks for services such as Office 365, Xbox Live, Azure, Windows, Bing, and Skype, Azure Data Lake addresses many of the scalability and productivity hurdles that hinder your ability to fully utilize data. Ultimately, it empowers organizations to harness their data's potential more effectively and efficiently than ever before. -
44
StorageX
Data Dynamics
Data Dynamics presents StorageX, its premier solution for managing unstructured data, which offers a policy-driven approach without the constraints of vendor lock-in. With StorageX, organizations can effectively Analyze, Move, Manage, and Modernize their infrastructures, leading to reduced costs, mitigated risks, and automated policy enforcement. This innovative platform provides dynamic data capabilities for the digital enterprise, empowering businesses to utilize their data for a competitive edge. Enhanced metadata analytics offer valuable insights that streamline IT business operations. Additionally, StorageX features a robust migration engine capable of transferring large volumes of data swiftly and accurately across shares and exports. It also ensures scalable, secure, and automated mobility and synchronization for seamless file-to-object transformations. By employing intelligent archiving techniques, the solution identifies files suitable for migration to cost-effective object storage, facilitating long-term archiving and cloud tiering, ultimately optimizing data management strategies. With these powerful functionalities, StorageX redefines how organizations handle their data. -
45
Amazon S3 Glacier
Amazon
$1 per terabyte per monthAmazon S3 Glacier and S3 Glacier Deep Archive offer secure, reliable, and remarkably affordable cloud storage solutions within Amazon S3 specifically tailored for archiving data and long-term backups. These storage classes are engineered to achieve an impressive durability rate of 99.999999999% and come equipped with extensive security and compliance features that assist in fulfilling even the most demanding regulatory standards. Users can take advantage of pricing as low as $1 per terabyte each month, which presents a considerable cost reduction compared to traditional on-premises storage solutions. To accommodate diverse retrieval requirements without compromising affordability, Amazon S3 Glacier includes three distinct access options that range from mere minutes to several hours, while S3 Glacier Deep Archive offers two access choices with timelines spanning from 12 to 48 hours. Additionally, the S3 Glacier storage classes boast advanced compatibility with AWS CloudTrail, enabling the logging, monitoring, and retention of storage API call activities for effective auditing. Furthermore, they also feature three different encryption methods to enhance data security. Overall, these storage classes provide an efficient and scalable solution for businesses looking to streamline their data management processes.