Best Archon Data Store Alternatives in 2024
Find the top alternatives to Archon Data Store currently available. Compare ratings, reviews, pricing, and features of Archon Data Store alternatives in 2024. Slashdot lists the best Archon Data Store alternatives on the market that offer competing products that are similar to Archon Data Store. Sort through Archon Data Store alternatives below to make the best choice for your needs
-
1
ANSI SQL allows you to analyze petabytes worth of data at lightning-fast speeds with no operational overhead. Analytics at scale with 26%-34% less three-year TCO than cloud-based data warehouse alternatives. You can unleash your insights with a trusted platform that is more secure and scales with you. Multi-cloud analytics solutions that allow you to gain insights from all types of data. You can query streaming data in real-time and get the most current information about all your business processes. Machine learning is built-in and allows you to predict business outcomes quickly without having to move data. With just a few clicks, you can securely access and share the analytical insights within your organization. Easy creation of stunning dashboards and reports using popular business intelligence tools right out of the box. BigQuery's strong security, governance, and reliability controls ensure high availability and a 99.9% uptime SLA. Encrypt your data by default and with customer-managed encryption keys
-
2
Looker
Google
2,772 RatingsLooker reinvents the way business intelligence (BI) works by delivering an entirely new kind of data discovery solution that modernizes BI in three important ways. A simplified web-based stack leverages our 100% in-database architecture, so customers can operate on big data and find the last mile of value in the new era of fast analytic databases. An agile development environment enables today’s data rockstars to model the data and create end-user experiences that make sense for each specific business, transforming data on the way out, rather than on the way in. At the same time, a self-service data-discovery experience works the way the web works, empowering business users to drill into and explore very large datasets without ever leaving the browser. As a result, Looker customers enjoy the power of traditional BI at the speed of the web. -
3
AnalyticsCreator
AnalyticsCreator
AnalyticsCreator lets you extend and adjust an existing DWH. It is easy to build a solid foundation. The reverse engineering method of AnalyticsCreator allows you to integrate code from an existing DWH app into AC. So, more layers/areas are included in the automation. This will support the change process more extensively. The extension of an manually developed DWH with an ETL/ELT can quickly consume resources and time. Our experience and studies found on the internet have shown that the longer the lifecycle the higher the cost. You can use AnalyticsCreator to design your data model and generate a multitier data warehouse for your Power BI analytical application. The business logic is mapped at one place in AnalyticsCreator. -
4
Domo
Domo
49 RatingsDomo puts data to work for everyone so they can multiply their impact on the business. Underpinned by a secure data foundation, our cloud-native data experience platform makes data visible and actionable with user-friendly dashboards and apps. Domo helps companies optimize critical business processes at scale and in record time to spark bold curiosity that powers exponential business results. -
5
Composable is an enterprise-grade DataOps platform designed for business users who want to build data-driven products and create data intelligence solutions. It can be used to design data-driven products that leverage disparate data sources, live streams, and event data, regardless of their format or structure. Composable offers a user-friendly, intuitive dataflow visual editor, built-in services that facilitate data engineering, as well as a composable architecture which allows abstraction and integration of any analytical or software approach. It is the best integrated development environment for discovering, managing, transforming, and analysing enterprise data.
-
6
Amazon Redshift
Amazon
$0.25 per hourAmazon Redshift is preferred by more customers than any other cloud data storage. Redshift powers analytic workloads for Fortune 500 companies and startups, as well as everything in between. Redshift has helped Lyft grow from a startup to multi-billion-dollar enterprises. It's easier than any other data warehouse to gain new insights from all of your data. Redshift allows you to query petabytes (or more) of structured and semi-structured information across your operational database, data warehouse, and data lake using standard SQL. Redshift allows you to save your queries to your S3 database using open formats such as Apache Parquet. This allows you to further analyze other analytics services like Amazon EMR and Amazon Athena. Redshift is the fastest cloud data warehouse in the world and it gets faster each year. The new RA3 instances can be used for performance-intensive workloads to achieve up to 3x the performance compared to any cloud data warehouse. -
7
Databricks Data Intelligence Platform
Databricks
The Databricks Data Intelligence Platform enables your entire organization to utilize data and AI. It is built on a lakehouse that provides an open, unified platform for all data and governance. It's powered by a Data Intelligence Engine, which understands the uniqueness in your data. Data and AI companies will win in every industry. Databricks can help you achieve your data and AI goals faster and easier. Databricks combines the benefits of a lakehouse with generative AI to power a Data Intelligence Engine which understands the unique semantics in your data. The Databricks Platform can then optimize performance and manage infrastructure according to the unique needs of your business. The Data Intelligence Engine speaks your organization's native language, making it easy to search for and discover new data. It is just like asking a colleague a question. -
8
DataLakeHouse.io
DataLakeHouse.io
$99DataLakeHouse.io Data Sync allows users to replicate and synchronize data from operational systems (on-premises and cloud-based SaaS), into destinations of their choice, primarily Cloud Data Warehouses. DLH.io is a tool for marketing teams, but also for any data team in any size organization. It enables business cases to build single source of truth data repositories such as dimensional warehouses, data vaults 2.0, and machine learning workloads. Use cases include technical and functional examples, including: ELT and ETL, Data Warehouses, Pipelines, Analytics, AI & Machine Learning and Data, Marketing and Sales, Retail and FinTech, Restaurants, Manufacturing, Public Sector and more. DataLakeHouse.io has a mission: to orchestrate the data of every organization, especially those who wish to become data-driven or continue their data-driven strategy journey. DataLakeHouse.io, aka DLH.io, allows hundreds of companies manage their cloud data warehousing solutions. -
9
Mozart Data
Mozart Data
Mozart Data is the all-in-one modern data platform for consolidating, organizing, and analyzing your data. Set up a modern data stack in an hour, without any engineering. Start getting more out of your data and making data-driven decisions today. -
10
Dremio
Dremio
Dremio provides lightning-fast queries as well as a self-service semantic layer directly to your data lake storage. No data moving to proprietary data warehouses, and no cubes, aggregation tables, or extracts. Data architects have flexibility and control, while data consumers have self-service. Apache Arrow and Dremio technologies such as Data Reflections, Columnar Cloud Cache(C3), and Predictive Pipelining combine to make it easy to query your data lake storage. An abstraction layer allows IT to apply security and business meaning while allowing analysts and data scientists access data to explore it and create new virtual datasets. Dremio's semantic layers is an integrated searchable catalog that indexes all your metadata so business users can make sense of your data. The semantic layer is made up of virtual datasets and spaces, which are all searchable and indexed. -
11
BigLake
Google
$5 per TBBigLake is a storage platform that unifies data warehouses, lakes and allows BigQuery and open-source frameworks such as Spark to access data with fine-grained control. BigLake offers accelerated query performance across multicloud storage and open formats like Apache Iceberg. You can store one copy of your data across all data warehouses and lakes. Multi-cloud governance and fine-grained access control for distributed data. Integration with open-source analytics tools, and open data formats is seamless. You can unlock analytics on distributed data no matter where it is stored. While choosing the best open-source or cloud-native analytics tools over a single copy, you can also access analytics on distributed data. Fine-grained access control for open source engines such as Apache Spark, Presto and Trino and open formats like Parquet. BigQuery supports performant queries on data lakes. Integrates with Dataplex for management at scale, including logical organization. -
12
Alibaba Cloud Data Lake Formation
Alibaba Cloud
A data lake is a central repository for big data and AI computing. It allows you to store both structured and unstructured data at any size. Data Lake Formation (DLF), is a key component in the cloud-native database lake framework. DLF is a simple way to create a cloud-native database lake. It integrates seamlessly with a variety compute engines. You can manage metadata in data lakes in an centralized manner and control enterprise class permissions. It can systematically collect structured, semi-structured and unstructured data, and supports massive data storage. This architecture separates storage and computing. This allows you to plan resources on demand and at low costs. This increases data processing efficiency to meet rapidly changing business needs. DLF can automatically detect and collect metadata from multiple engines. It can also manage the metadata in a central manner to resolve data silo problems. -
13
e6data
e6data
Limited competition due to high barriers to entry, specialized knowledge, massive capital requirements, and long times to market. The price and performance of existing platforms are virtually identical, reducing the incentive for a switch. It takes months to migrate from one engine's SQL dialect into another engine's SQL. Interoperable with all major standards. Data leaders in enterprise are being hit by a massive surge in computing demand. They are surprised to discover that 10% of heavy, compute-intensive uses cases consume 80% the cost, engineering efforts and stakeholder complaints. Unfortunately, these workloads are mission-critical and nondiscretionary. e6data increases ROI for enterprises' existing data platforms. e6data’s format-neutral computing is unique in that it is equally efficient and performant for all leading data lakehouse formats. -
14
IBM watsonx.data
IBM
Open, hybrid data lakes for AI and analytics can be used to put your data to use, wherever it is located. Connect your data in any format and from anywhere. Access it through a shared metadata layer. By matching the right workloads to the right query engines, you can optimize workloads in terms of price and performance. Integrate natural-language semantic searching without the need for SQL to unlock AI insights faster. Manage and prepare trusted datasets to improve the accuracy and relevance of your AI applications. Use all of your data everywhere. Watsonx.data offers the speed and flexibility of a warehouse, along with special features that support AI. This allows you to scale AI and analytics throughout your business. Choose the right engines to suit your workloads. You can manage your cost, performance and capability by choosing from a variety of open engines, including Presto C++ and Spark Milvus. -
15
Qlik Compose
Qlik
Qlik Compose for Data Warehouses offers a modern approach to data warehouse creation and operations by automating and optimising the process. Qlik Compose automates the design of the warehouse, generates ETL code and quickly applies updates, all while leveraging best practices. Qlik Compose for Data Warehouses reduces time, cost, and risk for BI projects whether they are on-premises, or in the cloud. Qlik Compose for Data Lakes automates data pipelines, resulting in analytics-ready data. By automating data ingestion and schema creation, as well as continual updates, organizations can realize a faster return on their existing data lakes investments. -
16
FutureAnalytica
FutureAnalytica
Our platform is the only one that offers an end-to–end platform for AI-powered innovation. It can handle everything from data cleansing and structuring to creating and deploying advanced data-science models to infusing advanced analytics algorithms, to infusing Recommendation AI, to deducing outcomes with simple-to-deduce visualization dashboards as well as Explainable AI to track how the outcomes were calculated. Our platform provides a seamless, holistic data science experience. FutureAnalytica offers key features such as a robust Data Lakehouse and an AI Studio. There is also a comprehensive AI Marketplace. You can also get support from a world-class team of data-science experts (on a case-by-case basis). FutureAnalytica will help you save time, effort, and money on your data-science and AI journey. Start discussions with the leadership and then a quick technology assessment within 1-3 days. In 10-18 days, you can create ready-to-integrate AI solutions with FA's fully-automated data science & AI platform. -
17
Delta Lake
Delta Lake
Delta Lake is an open-source storage platform that allows ACID transactions to Apache Spark™, and other big data workloads. Data lakes often have multiple data pipelines that read and write data simultaneously. This makes it difficult for data engineers to ensure data integrity due to the absence of transactions. Your data lakes will benefit from ACID transactions with Delta Lake. It offers serializability, which is the highest level of isolation. Learn more at Diving into Delta Lake - Unpacking the Transaction log. Even metadata can be considered "big data" in big data. Delta Lake treats metadata the same as data and uses Spark's distributed processing power for all its metadata. Delta Lake is able to handle large tables with billions upon billions of files and partitions at a petabyte scale. Delta Lake allows developers to access snapshots of data, allowing them to revert to earlier versions for audits, rollbacks, or to reproduce experiments. -
18
Sesame Software
Sesame Software
When you have the expertise of an enterprise partner combined with a scalable, easy-to-use data management suite, you can take back control of your data, access it from anywhere, ensure security and compliance, and unlock its power to grow your business. Why Use Sesame Software? Relational Junction builds, populates, and incrementally refreshes your data automatically. Enhance Data Quality - Convert data from multiple sources into a consistent format – leading to more accurate data, which provides the basis for solid decisions. Gain Insights - Automate the update of information into a central location, you can use your in-house BI tools to build useful reports to avoid costly mistakes. Fixed Price - Avoid high consumption costs with yearly fixed prices and multi-year discounts no matter your data volume. -
19
Lyftrondata
Lyftrondata
Lyftrondata can help you build a governed lake, data warehouse or migrate from your old database to a modern cloud-based data warehouse. Lyftrondata makes it easy to create and manage all your data workloads from one platform. This includes automatically building your warehouse and pipeline. It's easy to share the data with ANSI SQL, BI/ML and analyze it instantly. You can increase the productivity of your data professionals while reducing your time to value. All data sets can be defined, categorized, and found in one place. These data sets can be shared with experts without coding and used to drive data-driven insights. This data sharing capability is ideal for companies who want to store their data once and share it with others. You can define a dataset, apply SQL transformations, or simply migrate your SQL data processing logic into any cloud data warehouse. -
20
Onehouse
Onehouse
The only fully-managed cloud data lakehouse that can ingest data from all of your sources in minutes, and support all of your query engines on a large scale. All for a fraction the cost. With the ease of fully managed pipelines, you can ingest data from databases and event streams in near-real-time. You can query your data using any engine and support all of your use cases, including BI, AI/ML, real-time analytics and AI/ML. Simple usage-based pricing allows you to cut your costs by up to 50% compared with cloud data warehouses and ETL software. With a fully-managed, highly optimized cloud service, you can deploy in minutes and without any engineering overhead. Unify all your data into a single source and eliminate the need for data to be copied between data lakes and warehouses. Apache Hudi, Apache Iceberg and Delta Lake all offer omnidirectional interoperability, allowing you to choose the best table format for your needs. Configure managed pipelines quickly for database CDC and stream ingestion. -
21
Secure and manage the data lifecycle, from Edge to AI in any cloud or data centre. Operates on all major public clouds as well as the private cloud with a public experience everywhere. Integrates data management and analytics experiences across the entire data lifecycle. All environments are covered by security, compliance, migration, metadata management. Open source, extensible, and open to multiple data stores. Self-service analytics that is faster, safer, and easier to use. Self-service access to multi-function, integrated analytics on centrally managed business data. This allows for consistent experiences anywhere, whether it is in the cloud or hybrid. You can enjoy consistent data security, governance and lineage as well as deploying the cloud analytics services that business users need. This eliminates the need for shadow IT solutions.
-
22
Openbridge
Openbridge
$149 per monthDiscover insights to boost sales growth with code-free, fully automated data pipelines to data lakes and cloud warehouses. Flexible, standards-based platform that unifies sales and marketing data to automate insights and smarter growth. Say goodbye to manual data downloads that are expensive and messy. You will always know exactly what you'll be charged and only pay what you actually use. Access to data-ready data is a great way to fuel your tools. We only work with official APIs as certified developers. Data pipelines from well-known sources are easy to use. These data pipelines are pre-built, pre-transformed and ready to go. Unlock data from Amazon Vendor Central and Amazon Seller Central, Instagram Stories. Teams can quickly and economically realize the value of their data with code-free data ingestion and transformation. Databricks, Amazon Redshift and other trusted data destinations like Databricks or Amazon Redshift ensure that data is always protected. -
23
Data lakehouse is an open architecture that allows you to store, understand and analyze all of your data. It combines the power, richness, and flexibility of data warehouses with the breadth of open-source data technologies. A data lakehouse can easily be built on Oracle Cloud Infrastructure (OCI). It can also be used with pre-built AI services such as Oracle's language service and the latest AI frameworks. Data Flow, a serverless Spark service, allows our customers to concentrate on their Spark workloads using zero infrastructure concepts. Customers of Oracle want to build machine learning-based analytics on their Oracle SaaS data or any SaaS data. Our easy-to-use connectors for Oracle SaaS make it easy to create a lakehouse to analyze all of your SaaS data and reduce time to solve problems.
-
24
BryteFlow
BryteFlow
BryteFlow creates the most efficient and automated environments for analytics. It transforms Amazon S3 into a powerful analytics platform by intelligently leveraging AWS ecosystem to deliver data at lightning speed. It works in conjunction with AWS Lake Formation and automates Modern Data Architecture, ensuring performance and productivity. -
25
Talend Data Fabric
Qlik
Talend Data Fabric's cloud services are able to efficiently solve all your integration and integrity problems -- on-premises or in cloud, from any source, at any endpoint. Trusted data delivered at the right time for every user. With an intuitive interface and minimal coding, you can easily and quickly integrate data, files, applications, events, and APIs from any source to any location. Integrate quality into data management to ensure compliance with all regulations. This is possible through a collaborative, pervasive, and cohesive approach towards data governance. High quality, reliable data is essential to make informed decisions. It must be derived from real-time and batch processing, and enhanced with market-leading data enrichment and cleaning tools. Make your data more valuable by making it accessible internally and externally. Building APIs is easy with the extensive self-service capabilities. This will improve customer engagement. -
26
ELCA Smart Data Lake Builder
ELCA Group
FreeThe classic data lake is often reduced to simple but inexpensive raw data storage. This neglects important aspects like data quality, security, and transformation. These topics are left to data scientists who spend up to 80% of their time cleaning, understanding, and acquiring data before they can use their core competencies. Additionally, traditional Data Lakes are often implemented in different departments using different standards and tools. This makes it difficult to implement comprehensive analytical use cases. Smart Data Lakes address these issues by providing methodical and architectural guidelines as well as an efficient tool to create a strong, high-quality data foundation. Smart Data Lakes are the heart of any modern analytics platform. They integrate all the most popular Data Science tools and open-source technologies as well as AI/ML. Their storage is affordable and scalable, and can store both structured and unstructured data. -
27
IBM Storage Scale
IBM
$19.10 per terabyteIBM Storage Scale, a software-defined object and file storage, allows organizations to build global data platforms for artificial intelligence (AI), advanced analytics and high-performance computing. Unlike traditional applications that work with structured data, today's performance-intensive AI and analytics workloads operate on unstructured data, such as documents, audio, images, videos, and other objects. IBM Storage Scale provides global data abstractions services that seamlessly connect data sources in multiple locations, even non-IBM storage environments. It is based on a massively-parallel file system that can be deployed across multiple hardware platforms, including x86 and IBM Power mainframes as well as ARM-based POSIX clients, virtual machines and Kubernetes. -
28
Your cloud data platform. Access to any data you need with unlimited scalability. All your data is available to you, with the near-infinite performance and concurrency required by your organization. You can seamlessly share and consume shared data across your organization to collaborate and solve your most difficult business problems. You can increase productivity and reduce time to value by collaborating with data professionals to quickly deliver integrated data solutions from any location in your organization. Our technology partners and system integrators can help you deploy Snowflake to your success, no matter if you are moving data into Snowflake.
-
29
Dataleyk
Dataleyk
€0.1 per GBDataleyk is a secure, fully-managed cloud platform for SMBs. Our mission is to make Big Data analytics accessible and easy for everyone. Dataleyk is the missing piece to achieving your data-driven goals. Our platform makes it easy to create a stable, flexible, and reliable cloud data lake without any technical knowledge. All of your company data can be brought together, explored with SQL, and visualized with your favorite BI tool. Dataleyk will modernize your data warehouse. Our cloud-based data platform is capable of handling both structured and unstructured data. Data is an asset. Dataleyk, a cloud-based data platform, encrypts all data and offers data warehousing on-demand. Zero maintenance may not be an easy goal. It can be a catalyst for significant delivery improvements, and transformative results. -
30
Qubole
Qubole
Qubole is an open, secure, and simple Data Lake Platform that enables machine learning, streaming, or ad-hoc analysis. Our platform offers end-to-end services to reduce the time and effort needed to run Data pipelines and Streaming Analytics workloads on any cloud. Qubole is the only platform that offers more flexibility and openness for data workloads, while also lowering cloud data lake costs up to 50%. Qubole provides faster access to trusted, secure and reliable datasets of structured and unstructured data. This is useful for Machine Learning and Analytics. Users can efficiently perform ETL, analytics, or AI/ML workloads in an end-to-end fashion using best-of-breed engines, multiple formats and libraries, as well as languages that are adapted to data volume and variety, SLAs, and organizational policies. -
31
Data Lakes on AWS
Amazon
Many customers of Amazon Web Services (AWS), require data storage and analytics solutions that are more flexible and agile than traditional data management systems. Data lakes are a popular way to store and analyze data. They allow companies to manage multiple data types, from many sources, and store these data in a central repository. AWS Cloud offers many building blocks to enable customers to create a secure, flexible, cost-effective data lake. These services include AWS managed services that allow you to ingest, store and find structured and unstructured data. AWS offers the data solution to support customers in building data lakes. This is an automated reference implementation that deploys an efficient, cost-effective, high-availability data lake architecture on AWS Cloud. It also includes a user-friendly console for searching for and requesting data. -
32
Narrative
Narrative
$0With your own data shop, create new revenue streams from the data you already have. Narrative focuses on the fundamental principles that make buying or selling data simpler, safer, and more strategic. You must ensure that the data you have access to meets your standards. It is important to know who and how the data was collected. Access new supply and demand easily for a more agile, accessible data strategy. You can control your entire data strategy with full end-to-end access to all inputs and outputs. Our platform automates the most labor-intensive and time-consuming aspects of data acquisition so that you can access new data sources in days instead of months. You'll only ever have to pay for what you need with filters, budget controls and automatic deduplication. -
33
AtScale
AtScale
AtScale accelerates and simplifies business intelligence. This results in better business decisions and a faster time to insight. Reduce repetitive data engineering tasks such as maintaining, curating, and delivering data for analysis. To ensure consistent KPI reporting across BI tools, you can define business definitions in one place. You can speed up the time it takes to gain insight from data and also manage cloud compute costs efficiently. No matter where your data is located, you can leverage existing data security policies to perform data analytics. AtScale's Insights models and workbooks allow you to perform Cloud OLAP multidimensional analysis using data sets from multiple providers - without any data prep or engineering. To help you quickly gain insights that you can use to make business decisions, we provide easy-to-use dimensions and measures. -
34
Querona
YouNeedIT
We make BI and Big Data analytics easier and more efficient. Our goal is to empower business users, make BI specialists and always-busy business more independent when solving data-driven business problems. Querona is a solution for those who have ever been frustrated by a lack in data, slow or tedious report generation, or a long queue to their BI specialist. Querona has a built-in Big Data engine that can handle increasing data volumes. Repeatable queries can be stored and calculated in advance. Querona automatically suggests improvements to queries, making optimization easier. Querona empowers data scientists and business analysts by giving them self-service. They can quickly create and prototype data models, add data sources, optimize queries, and dig into raw data. It is possible to use less IT. Users can now access live data regardless of where it is stored. Querona can cache data if databases are too busy to query live. -
35
datuum.ai
Datuum
Datuum is an AI-powered data integration tool that offers a unique solution for organizations looking to streamline their data integration process. With our pre-trained AI engine, Datuum simplifies customer data onboarding by allowing for automated integration from various sources without coding. This reduces data preparation time and helps establish resilient connectors, ultimately freeing up time for organizations to focus on generating insights and improving the customer experience. At Datuum, we have over 40 years of experience in data management and operations, and we've incorporated our expertise into the core of our product. Our platform is designed to address the critical challenges faced by data engineers and managers while being accessible and user-friendly for non-technical specialists. By reducing up to 80% of the time typically spent on data-related tasks, Datuum can help organizations optimize their data management processes and achieve more efficient outcomes. -
36
Peliqan
Peliqan
$199Peliqan.io provides a data platform that is all-in-one for business teams, IT service providers, startups and scale-ups. No data engineer required. Connect to databases, data warehouses, and SaaS applications. In a spreadsheet interface, you can explore and combine data. Business users can combine multiple data sources, clean data, edit personal copies, and apply transformations. Power users can use SQL on anything, and developers can use Low-code to create interactive data apps, implement writing backs and apply machine intelligence. -
37
EntelliFusion
Teksouth
EntelliFusion by Teksouth is a fully managed, end to end solution. EntelliFusion's architecture is a one-stop solution for outfitting a company's data infrastructure. Instead of trying to put together multiple platforms for data prep, data warehouse and governance, and then deploying a lot of IT resources to make it all work, EntelliFusion's architecture offers a single platform. EntelliFusion unites data silos into a single platform that allows for cross-functional KPI's. This creates powerful insights and holistic solutions. EntelliFusion's "military born" technology has been able to withstand the rigorous demands of the USA's top echelon in military operations. It was scaled up across the DOD over twenty years. EntelliFusion is built using the most recent Microsoft technologies and frameworks, which allows it to continue being improved and innovated. EntelliFusion is data-agnostic and infinitely scalable. It guarantees accuracy and performance to encourage end-user tool adoption. -
38
AWS Lake Formation
Amazon
AWS Lake Formation makes it simple to create a secure data lake in a matter of days. A data lake is a centrally managed, secured, and curated repository that stores all of your data. It can be both in its original form or prepared for analysis. Data lakes allow you to break down data silos, combine different types of analytics, and gain insights that will guide your business decisions. It is a time-consuming, manual, complex, and tedious task to set up and manage data lakes. This includes loading data from different sources, monitoring data flows, setting partitions, turning encryption on and managing keys, defining and monitoring transformation jobs, reorganizing data in a columnar format, deduplicating redundant information, and matching linked records. Once data has been loaded into a data lake, you will need to give fine-grained access and audit access over time to a wide variety of analytics and machine learning tools and services. -
39
Kylo
Teradata
Kylo is an enterprise-ready open-source data lake management platform platform for self-service data ingestion and data preparation. It integrates metadata management, governance, security, and best practices based on Think Big's 150+ big-data implementation projects. Self-service data ingest that includes data validation, data cleansing, and automatic profiling. Visual sql and an interactive transformation through a simple user interface allow you to manage data. Search and explore data and metadata. View lineage and profile statistics. Monitor the health of feeds, services, and data lakes. Track SLAs and troubleshoot performance. To enable user self-service, create batch or streaming pipeline templates in Apache NiFi. While organizations can spend a lot of engineering effort to move data into Hadoop, they often struggle with data governance and data quality. Kylo simplifies data ingest and shifts it to data owners via a simple, guided UI. -
40
Azure Data Lake
Microsoft
Azure Data Lake offers all the capabilities needed to make it easy to store and analyze data across all platforms and languages. It eliminates the complexity of ingesting, storing, and streaming data, making it easier to get up-and-running with interactive, batch, and streaming analytics. Azure Data Lake integrates with existing IT investments to simplify data management and governance. It can also seamlessly integrate with existing IT investments such as data warehouses and operational stores, allowing you to extend your current data applications. We have the experience of working with enterprise customers, running large-scale processing and analytics for Microsoft businesses such as Office 365, Microsoft Windows, Bing, Azure, Windows, Windows, and Microsoft Windows. Azure Data Lake solves many productivity and scaling issues that prevent you from maximizing the potential of your data. -
41
Huawei Cloud Data Lake Governance Center
Huawei
$428 one-time paymentData Lake Governance Center (DGC) is a one-stop platform for managing data design, development and integration. It simplifies big data operations and builds intelligent knowledge libraries. A simple visual interface allows you to build an enterprise-class platform for data lake governance. Streamline your data lifecycle, use metrics and analytics, and ensure good corporate governance. Get real-time alerts and help to define and monitor data standards. To create data lakes faster, you can easily set up data models, data integrations, and cleaning rules to facilitate the discovery of reliable data sources. Maximize data's business value. DGC can be used to create end-to-end data operations solutions for smart government, smart taxation and smart campus. Gain new insights into sensitive data across your entire organization. DGC allows companies to define business categories, classifications, terms. -
42
Varada
Varada
Varada's adaptive and dynamic big data indexing solution allows you to balance cost and performance with zero data-ops. Varada's big data indexing technology is a smart acceleration layer for your data lake. It remains the single source and truth and runs in the customer's cloud environment (VPC). Varada allows data teams to democratize data. It allows them to operationalize the entire data lake and ensures interactive performance without the need for data to be moved, modelled, or manually optimized. Our ability to dynamically and automatically index relevant data at the source structure and granularity is our secret sauce. Varada allows any query to meet constantly changing performance and concurrency requirements of users and analytics API calls. It also keeps costs predictable and under control. The platform automatically determines which queries to speed up and which data to index. Varada adjusts the cluster elastically to meet demand and optimize performance and cost. -
43
Iterative
Iterative
AI teams are faced with challenges that require new technologies. These technologies are built by us. Existing data lakes and data warehouses do not work with unstructured data like text, images, or videos. AI and software development go hand in hand. Built with data scientists, ML experts, and data engineers at heart. Don't reinvent your wheel! Production is fast and cost-effective. All your data is stored by you. Your machines are used to train your models. Existing data lakes and data warehouses do not work with unstructured data like text, images, or videos. New technologies are required for AI teams. These technologies are built by us. Studio is an extension to BitBucket, GitLab, and GitHub. Register for the online SaaS version, or contact us to start an on-premise installation -
44
Azure Data Lake Storage
Microsoft
A single storage platform can eliminate data silos. Tiered storage and policy management can help you reduce costs. Azure Active Directory (Azure AD), and role-based access control(RBAC) can authenticate data. You can also help protect your data with advanced threat protection and encryption at rest. Flexible mechanisms provide protection for data access, encryption, network-level control, and more. Highly secure. A single storage platform that supports all the most popular analytics frameworks. Cost optimization through independent scaling of storage, compute, lifecycle management and object-level Tiering. With the Azure global infrastructure, you can meet any capacity requirement and manage data with ease. Large-scale analytics queries run at high performance. -
45
Microsoft Fabric
Microsoft
$156.334/month/ 2CU Connecting every data source with analytics services on a single AI-powered platform will transform how people access, manage, and act on data and insights. All your data. All your teams. All your teams in one place. Create an open, lake-centric hub to help data engineers connect data from various sources and curate it. This will eliminate sprawl and create custom views for all. Accelerate analysis through the development of AI models without moving data. This reduces the time needed by data scientists to deliver value. Microsoft Teams, Microsoft Excel, and Microsoft Teams are all great tools to help your team innovate faster. Connect people and data responsibly with an open, scalable solution. This solution gives data stewards more control, thanks to its built-in security, compliance, and governance. -
46
VeloDB
VeloDB
VeloDB, powered by Apache Doris is a modern database for real-time analytics at scale. In seconds, micro-batch data can be ingested using a push-based system. Storage engine with upserts, appends and pre-aggregations in real-time. Unmatched performance in real-time data service and interactive ad hoc queries. Not only structured data, but also semi-structured. Not only real-time analytics, but also batch processing. Not only run queries against internal data, but also work as an federated query engine to access external databases and data lakes. Distributed design to support linear scalability. Resource usage can be adjusted flexibly to meet workload requirements, whether on-premise or cloud deployment, separation or integration. Apache Doris is fully compatible and built on this open source software. Support MySQL functions, protocol, and SQL to allow easy integration with other tools. -
47
Qlik Data Integration platform automates the process for providing reliable, accurate and trusted data sets for business analysis. Data engineers are able to quickly add new sources to ensure success at all stages of the data lake pipeline, from real-time data intake, refinement, provisioning and governance. This is a simple and universal solution to continuously ingest enterprise data into popular data lake in real-time. This model-driven approach allows you to quickly design, build, and manage data lakes in the cloud or on-premises. To securely share all your derived data sets, create a smart enterprise-scale database catalog.
-
48
DQOps
DQOps
$499 per monthDQOps is a data quality monitoring platform for data teams that helps detect and address quality issues before they impact your business. Track data quality KPIs on data quality dashboards and reach a 100% data quality score. DQOps helps monitor data warehouses and data lakes on the most popular data platforms. DQOps offers a built-in list of predefined data quality checks verifying key data quality dimensions. The extensibility of the platform allows you to modify existing checks or add custom, business-specific checks as needed. The DQOps platform easily integrates with DevOps environments and allows data quality definitions to be stored in a source repository along with the data pipeline code. -
49
Utilihive
Greenbird Integration Technology
Utilihive, a cloud-native big-data integration platform, is offered as a managed (SaaS) service. Utilihive, the most popular Enterprise-iPaaS (iPaaS), is specifically designed for utility and energy usage scenarios. Utilihive offers both the technical infrastructure platform (connectivity and integration, data ingestion and data lake management) and preconfigured integration content or accelerators. (connectors and data flows, orchestrations and utility data model, energy services, monitoring and reporting dashboards). This allows for faster delivery of data-driven services and simplifies operations. -
50
Amazon Security Lake
Amazon
$0.75 per GB per monthAmazon Security Lake centralizes all security data, including data from AWS, SaaS, on-premises and cloud sources, into a data lake that is stored in your account. Security Lake allows you to gain a better understanding of all your security data throughout your organization. You can also improve your workloads, apps, and data. Security Lake has adopted an open standard, the Open Cybersecurity Schema Framework. The service can combine and normalize security data from AWS as well as a wide range of enterprise data sources with OCSF support. You can use your favorite analytics tools to analyze security data, while maintaining complete control and ownership of that data. Centralize data visibility across all your accounts and AWS regions. Normalizing your security data according to an open standard will streamline your data management.