Best Archon Data Store Alternatives in 2025
Find the top alternatives to Archon Data Store currently available. Compare ratings, reviews, pricing, and features of Archon Data Store alternatives in 2025. Slashdot lists the best Archon Data Store alternatives on the market that offer competing products that are similar to Archon Data Store. Sort through Archon Data Store alternatives below to make the best choice for your needs
-
1
BigQuery is a serverless, multicloud data warehouse that makes working with all types of data effortless, allowing you to focus on extracting valuable business insights quickly. As a central component of Google’s data cloud, it streamlines data integration, enables cost-effective and secure scaling of analytics, and offers built-in business intelligence for sharing detailed data insights. With a simple SQL interface, it also supports training and deploying machine learning models, helping to foster data-driven decision-making across your organization. Its robust performance ensures that businesses can handle increasing data volumes with minimal effort, scaling to meet the needs of growing enterprises. Gemini within BigQuery brings AI-powered tools that enhance collaboration and productivity, such as code recommendations, visual data preparation, and intelligent suggestions aimed at improving efficiency and lowering costs. The platform offers an all-in-one environment with SQL, a notebook, and a natural language-based canvas interface, catering to data professionals of all skill levels. This cohesive workspace simplifies the entire analytics journey, enabling teams to work faster and more efficiently.
-
2
AnalyticsCreator
AnalyticsCreator
46 RatingsAccelerate your data journey with AnalyticsCreator. Automate the design, development, and deployment of modern data architectures, including dimensional models, data marts, and data vaults or a combination of modeling techniques. Seamlessly integrate with leading platforms like Microsoft Fabric, Power BI, Snowflake, Tableau, and Azure Synapse and more. Experience streamlined development with automated documentation, lineage tracking, and schema evolution. Our intelligent metadata engine empowers rapid prototyping and deployment of analytics and data solutions. Reduce time-consuming manual tasks, allowing you to focus on data-driven insights and business outcomes. AnalyticsCreator supports agile methodologies and modern data engineering workflows, including CI/CD. Let AnalyticsCreator handle the complexities of data modeling and transformation, enabling you to unlock the full potential of your data -
3
Amazon Redshift
Amazon
$0.25 per hourAmazon Redshift is the preferred choice among customers for cloud data warehousing, outpacing all competitors in popularity. It supports analytical tasks for a diverse range of organizations, from Fortune 500 companies to emerging startups, facilitating their evolution into large-scale enterprises, as evidenced by Lyft's growth. No other data warehouse simplifies the process of extracting insights from extensive datasets as effectively as Redshift. Users can perform queries on vast amounts of structured and semi-structured data across their operational databases, data lakes, and the data warehouse using standard SQL queries. Moreover, Redshift allows for the seamless saving of query results back to S3 data lakes in open formats like Apache Parquet, enabling further analysis through various analytics services, including Amazon EMR, Amazon Athena, and Amazon SageMaker. Recognized as the fastest cloud data warehouse globally, Redshift continues to enhance its performance year after year. For workloads that demand high performance, the new RA3 instances provide up to three times the performance compared to any other cloud data warehouse available today, ensuring businesses can operate at peak efficiency. This combination of speed and user-friendly features makes Redshift a compelling choice for organizations of all sizes. -
4
Domo
Domo
49 RatingsDomo puts data to work for everyone so they can multiply their impact on the business. Underpinned by a secure data foundation, our cloud-native data experience platform makes data visible and actionable with user-friendly dashboards and apps. Domo helps companies optimize critical business processes at scale and in record time to spark bold curiosity that powers exponential business results. -
5
DataLakeHouse.io
DataLakeHouse.io
$99DataLakeHouse.io Data Sync allows users to replicate and synchronize data from operational systems (on-premises and cloud-based SaaS), into destinations of their choice, primarily Cloud Data Warehouses. DLH.io is a tool for marketing teams, but also for any data team in any size organization. It enables business cases to build single source of truth data repositories such as dimensional warehouses, data vaults 2.0, and machine learning workloads. Use cases include technical and functional examples, including: ELT and ETL, Data Warehouses, Pipelines, Analytics, AI & Machine Learning and Data, Marketing and Sales, Retail and FinTech, Restaurants, Manufacturing, Public Sector and more. DataLakeHouse.io has a mission: to orchestrate the data of every organization, especially those who wish to become data-driven or continue their data-driven strategy journey. DataLakeHouse.io, aka DLH.io, allows hundreds of companies manage their cloud data warehousing solutions. -
6
Composable is an enterprise-grade DataOps platform designed for business users who want to build data-driven products and create data intelligence solutions. It can be used to design data-driven products that leverage disparate data sources, live streams, and event data, regardless of their format or structure. Composable offers a user-friendly, intuitive dataflow visual editor, built-in services that facilitate data engineering, as well as a composable architecture which allows abstraction and integration of any analytical or software approach. It is the best integrated development environment for discovering, managing, transforming, and analysing enterprise data.
-
7
Dremio
Dremio
Dremio provides lightning-fast queries as well as a self-service semantic layer directly to your data lake storage. No data moving to proprietary data warehouses, and no cubes, aggregation tables, or extracts. Data architects have flexibility and control, while data consumers have self-service. Apache Arrow and Dremio technologies such as Data Reflections, Columnar Cloud Cache(C3), and Predictive Pipelining combine to make it easy to query your data lake storage. An abstraction layer allows IT to apply security and business meaning while allowing analysts and data scientists access data to explore it and create new virtual datasets. Dremio's semantic layers is an integrated searchable catalog that indexes all your metadata so business users can make sense of your data. The semantic layer is made up of virtual datasets and spaces, which are all searchable and indexed. -
8
Databricks Data Intelligence Platform
Databricks
The Databricks Data Intelligence Platform empowers every member of your organization to leverage data and artificial intelligence effectively. Constructed on a lakehouse architecture, it establishes a cohesive and transparent foundation for all aspects of data management and governance, enhanced by a Data Intelligence Engine that recognizes the distinct characteristics of your data. Companies that excel across various sectors will be those that harness the power of data and AI. Covering everything from ETL processes to data warehousing and generative AI, Databricks facilitates the streamlining and acceleration of your data and AI objectives. By merging generative AI with the integrative advantages of a lakehouse, Databricks fuels a Data Intelligence Engine that comprehends the specific semantics of your data. This functionality enables the platform to optimize performance automatically and manage infrastructure in a manner tailored to your organization's needs. Additionally, the Data Intelligence Engine is designed to grasp the unique language of your enterprise, making the search and exploration of new data as straightforward as posing a question to a colleague, thus fostering collaboration and efficiency. Ultimately, this innovative approach transforms the way organizations interact with their data, driving better decision-making and insights. -
9
Mozart Data
Mozart Data
Mozart Data is the all-in-one modern data platform for consolidating, organizing, and analyzing your data. Set up a modern data stack in an hour, without any engineering. Start getting more out of your data and making data-driven decisions today. -
10
BigLake
Google
$5 per TBBigLake serves as a storage solution that merges data lakes and warehouses, allowing BigQuery and open-source frameworks like Spark to interact with data while maintaining detailed access controls. This engine boosts query efficiency across multi-cloud environments and supports open formats like Apache Iceberg. By storing a singular version of data with consistent features throughout both data lakes and warehouses, BigLake ensures fine-grained access management and governance across distributed data sources. It seamlessly connects with various open-source analytics tools and supports open data formats, providing analytics capabilities no matter the location or method of data storage. Users can select the most suitable analytics tools, whether open-source or cloud-native, while relying on a single data repository. Additionally, BigLake facilitates detailed access control across open-source engines, including Apache Spark, Presto, and Trino, as well as in formats like Parquet. It enhances query performance on data lakes using BigQuery and integrates with Dataplex, enabling scalable management and organized data structures. This comprehensive approach empowers organizations to maximize their data's potential and efficiently manage their analytics processes. -
11
Qlik Compose
Qlik
Qlik Compose for Data Warehouses offers a contemporary solution that streamlines and enhances the process of establishing and managing data warehouses. This tool not only automates the design of the warehouse but also generates ETL code and implements updates swiftly, all while adhering to established best practices and reliable design frameworks. By utilizing Qlik Compose for Data Warehouses, organizations can significantly cut down on the time, expense, and risk associated with BI initiatives, regardless of whether they are deployed on-premises or in the cloud. On the other hand, Qlik Compose for Data Lakes simplifies the creation of analytics-ready datasets by automating data pipeline processes. By handling data ingestion, schema setup, and ongoing updates, companies can achieve a quicker return on investment from their data lake resources, further enhancing their data strategy. Ultimately, these tools empower organizations to maximize their data potential efficiently. -
12
IBM watsonx.data
IBM
Leverage your data, regardless of its location, with an open and hybrid data lakehouse designed specifically for AI and analytics. Seamlessly integrate data from various sources and formats, all accessible through a unified entry point featuring a shared metadata layer. Enhance both cost efficiency and performance by aligning specific workloads with the most suitable query engines. Accelerate the discovery of generative AI insights with integrated natural-language semantic search, eliminating the need for SQL queries. Ensure that your AI applications are built on trusted data to enhance their relevance and accuracy. Maximize the potential of all your data, wherever it exists. Combining the rapidity of a data warehouse with the adaptability of a data lake, watsonx.data is engineered to facilitate the expansion of AI and analytics capabilities throughout your organization. Select the most appropriate engines tailored to your workloads to optimize your strategy. Enjoy the flexibility to manage expenses, performance, and features with access to an array of open engines, such as Presto, Presto C++, Spark Milvus, and many others, ensuring that your tools align perfectly with your data needs. This comprehensive approach allows for innovative solutions that can drive your business forward. -
13
Onehouse
Onehouse
Introducing a unique cloud data lakehouse that is entirely managed and capable of ingesting data from all your sources within minutes, while seamlessly accommodating every query engine at scale, all at a significantly reduced cost. This platform enables ingestion from both databases and event streams at terabyte scale in near real-time, offering the ease of fully managed pipelines. Furthermore, you can execute queries using any engine, catering to diverse needs such as business intelligence, real-time analytics, and AI/ML applications. By adopting this solution, you can reduce your expenses by over 50% compared to traditional cloud data warehouses and ETL tools, thanks to straightforward usage-based pricing. Deployment is swift, taking just minutes, without the burden of engineering overhead, thanks to a fully managed and highly optimized cloud service. Consolidate your data into a single source of truth, eliminating the necessity of duplicating data across various warehouses and lakes. Select the appropriate table format for each task, benefitting from seamless interoperability between Apache Hudi, Apache Iceberg, and Delta Lake. Additionally, quickly set up managed pipelines for change data capture (CDC) and streaming ingestion, ensuring that your data architecture is both agile and efficient. This innovative approach not only streamlines your data processes but also enhances decision-making capabilities across your organization. -
14
Alibaba Cloud Data Lake Formation
Alibaba Cloud
A data lake serves as a comprehensive repository designed for handling extensive data and artificial intelligence operations, accommodating both structured and unstructured data at any volume. It is essential for organizations looking to harness the power of Data Lake Formation (DLF), which simplifies the creation of a cloud-native data lake environment. DLF integrates effortlessly with various computing frameworks while enabling centralized management of metadata and robust enterprise-level permission controls. It systematically gathers structured, semi-structured, and unstructured data, ensuring substantial storage capabilities, and employs a design that decouples computing resources from storage solutions. This architecture allows for on-demand resource planning at minimal costs, significantly enhancing data processing efficiency to adapt to swiftly evolving business needs. Furthermore, DLF is capable of automatically discovering and consolidating metadata from multiple sources, effectively addressing issues related to data silos. Ultimately, this functionality streamlines data management, making it easier for organizations to leverage their data assets. -
15
Lyftrondata
Lyftrondata
If you're looking to establish a governed delta lake, create a data warehouse, or transition from a conventional database to a contemporary cloud data solution, Lyftrondata has you covered. You can effortlessly create and oversee all your data workloads within a single platform, automating the construction of your pipeline and warehouse. Instantly analyze your data using ANSI SQL and business intelligence or machine learning tools, and easily share your findings without the need for custom coding. This functionality enhances the efficiency of your data teams and accelerates the realization of value. You can define, categorize, and locate all data sets in one centralized location, enabling seamless sharing with peers without the complexity of coding, thus fostering insightful data-driven decisions. This capability is particularly advantageous for organizations wishing to store their data once, share it with various experts, and leverage it repeatedly for both current and future needs. In addition, you can define datasets, execute SQL transformations, or migrate your existing SQL data processing workflows to any cloud data warehouse of your choice, ensuring flexibility and scalability in your data management strategy. -
16
FutureAnalytica
FutureAnalytica
Introducing the world’s pioneering end-to-end platform designed for all your AI-driven innovation requirements—from data cleansing and organization to the creation and deployment of sophisticated data science models, as well as the integration of advanced analytics algorithms featuring built-in Recommendation AI; our platform also simplifies outcome interpretation with intuitive visualization dashboards and employs Explainable AI to trace the origins of outcomes. FutureAnalytica delivers a comprehensive, seamless data science journey, equipped with essential attributes such as a powerful Data Lakehouse, an innovative AI Studio, an inclusive AI Marketplace, and a top-notch data science support team available as needed. This unique platform is specifically tailored to streamline your efforts, reduce costs, and save time throughout your data science and AI endeavors. Start by engaging with our leadership team, and expect a swift technology evaluation within just 1 to 3 days. In a span of 10 to 18 days, you can construct fully automated, ready-to-integrate AI solutions using FutureAnalytica’s advanced platform, paving the way for a transformative approach to data management and analysis. Embrace the future of AI innovation with us today! -
17
Delta Lake
Delta Lake
Delta Lake serves as an open-source storage layer that integrates ACID transactions into Apache Spark™ and big data operations. In typical data lakes, multiple pipelines operate simultaneously to read and write data, which often forces data engineers to engage in a complex and time-consuming effort to maintain data integrity because transactional capabilities are absent. By incorporating ACID transactions, Delta Lake enhances data lakes and ensures a high level of consistency with its serializability feature, the most robust isolation level available. For further insights, refer to Diving into Delta Lake: Unpacking the Transaction Log. In the realm of big data, even metadata can reach substantial sizes, and Delta Lake manages metadata with the same significance as the actual data, utilizing Spark's distributed processing strengths for efficient handling. Consequently, Delta Lake is capable of managing massive tables that can scale to petabytes, containing billions of partitions and files without difficulty. Additionally, Delta Lake offers data snapshots, which allow developers to retrieve and revert to previous data versions, facilitating audits, rollbacks, or the replication of experiments while ensuring data reliability and consistency across the board. -
18
Openbridge
Openbridge
$149 per monthDiscover how to enhance sales growth effortlessly by utilizing automated data pipelines that connect seamlessly to data lakes or cloud storage solutions without the need for coding. This adaptable platform adheres to industry standards, enabling the integration of sales and marketing data to generate automated insights for more intelligent expansion. Eliminate the hassle and costs associated with cumbersome manual data downloads. You’ll always have a clear understanding of your expenses, only paying for the services you actually use. Empower your tools with rapid access to data that is ready for analytics. Our certified developers prioritize security by exclusively working with official APIs. You can quickly initiate data pipelines sourced from widely-used platforms. With pre-built, pre-transformed pipelines at your disposal, you can unlock crucial data from sources like Amazon Vendor Central, Amazon Seller Central, Instagram Stories, Facebook, Amazon Advertising, Google Ads, and more. The processes for data ingestion and transformation require no coding, allowing teams to swiftly and affordably harness the full potential of their data. Your information is consistently safeguarded and securely stored in a reliable, customer-controlled data destination such as Databricks or Amazon Redshift, ensuring peace of mind as you manage your data assets. This streamlined approach not only saves time but also enhances overall operational efficiency. -
19
e6data
e6data
The market experiences limited competition as a result of significant entry barriers, specialized expertise, substantial capital requirements, and extended time-to-market. Moreover, current platforms offer similar pricing and performance, which diminishes the motivation for users to transition. Transitioning from one SQL dialect to another can take months of intensive work. There is a demand for format-independent computing that can seamlessly work with all major open standards. Data leaders in enterprises are currently facing an extraordinary surge in the need for data intelligence. They are taken aback to discover that a mere 10% of their most demanding, compute-heavy tasks account for 80% of the costs, engineering resources, and stakeholder grievances. Regrettably, these workloads are also essential and cannot be neglected. e6data enhances the return on investment for a company's current data platforms and infrastructure. Notably, e6data’s format-agnostic computing stands out for its remarkable efficiency and performance across various leading data lakehouse table formats, thereby providing a significant advantage in optimizing enterprise operations. This innovative solution positions organizations to better manage their data-driven demands while maximizing their existing resources. -
20
A data lakehouse represents a contemporary, open architecture designed for storing, comprehending, and analyzing comprehensive data sets. It merges the robust capabilities of traditional data warehouses with the extensive flexibility offered by widely used open-source data technologies available today. Constructing a data lakehouse can be accomplished on Oracle Cloud Infrastructure (OCI), allowing seamless integration with cutting-edge AI frameworks and pre-configured AI services such as Oracle’s language processing capabilities. With Data Flow, a serverless Spark service, users can concentrate on their Spark workloads without needing to manage underlying infrastructure. Many Oracle clients aim to develop sophisticated analytics powered by machine learning, applied to their Oracle SaaS data or other SaaS data sources. Furthermore, our user-friendly data integration connectors streamline the process of establishing a lakehouse, facilitating thorough analysis of all data in conjunction with your SaaS data and significantly accelerating the time to achieve solutions. This innovative approach not only optimizes data management but also enhances analytical capabilities for businesses looking to leverage their data effectively.
-
21
Sesame Software
Sesame Software
When you have the expertise of an enterprise partner combined with a scalable, easy-to-use data management suite, you can take back control of your data, access it from anywhere, ensure security and compliance, and unlock its power to grow your business. Why Use Sesame Software? Relational Junction builds, populates, and incrementally refreshes your data automatically. Enhance Data Quality - Convert data from multiple sources into a consistent format – leading to more accurate data, which provides the basis for solid decisions. Gain Insights - Automate the update of information into a central location, you can use your in-house BI tools to build useful reports to avoid costly mistakes. Fixed Price - Avoid high consumption costs with yearly fixed prices and multi-year discounts no matter your data volume. -
22
Cloudera
Cloudera
Oversee and protect the entire data lifecycle from the Edge to AI across any cloud platform or data center. Functions seamlessly within all leading public cloud services as well as private clouds, providing a uniform public cloud experience universally. Unifies data management and analytical processes throughout the data lifecycle, enabling access to data from any location. Ensures the implementation of security measures, regulatory compliance, migration strategies, and metadata management in every environment. With a focus on open source, adaptable integrations, and compatibility with various data storage and computing systems, it enhances the accessibility of self-service analytics. This enables users to engage in integrated, multifunctional analytics on well-managed and protected business data, while ensuring a consistent experience across on-premises, hybrid, and multi-cloud settings. Benefit from standardized data security, governance, lineage tracking, and control, all while delivering the robust and user-friendly cloud analytics solutions that business users need, effectively reducing the reliance on unauthorized IT solutions. Additionally, these capabilities foster a collaborative environment where data-driven decision-making is streamlined and more efficient. -
23
IBM Storage Scale
IBM
$19.10 per terabyteIBM Storage Scale is an innovative software-defined solution for file and object storage, allowing organizations to create a comprehensive global data platform tailored for artificial intelligence (AI), high-performance computing (HPC), advanced analytics, and other resource-intensive tasks. In contrast to traditional applications that typically manage structured data, current high-performance AI and analytics operations are focused on unstructured data types, which can include a variety of formats such as documents, audio files, images, videos, and more. The software delivers global data abstraction services that efficiently unify various data sources across different geographic locations, even integrating non-IBM storage systems. It features a robust massively parallel file system and is compatible with a wide range of hardware platforms, comprising x86, IBM Power, IBM zSystem mainframes, ARM-based POSIX clients, virtual machines, and Kubernetes environments. This versatility enables organizations to adapt their storage solutions to meet diverse and evolving data management needs. Furthermore, IBM Storage Scale's ability to handle vast amounts of unstructured data positions it as a critical asset for enterprises aiming to leverage data for competitive advantage in today's digital landscape. -
24
BryteFlow
BryteFlow
BryteFlow creates the most efficient and automated environments for analytics. It transforms Amazon S3 into a powerful analytics platform by intelligently leveraging AWS ecosystem to deliver data at lightning speed. It works in conjunction with AWS Lake Formation and automates Modern Data Architecture, ensuring performance and productivity. -
25
ELCA Smart Data Lake Builder
ELCA Group
FreeTraditional Data Lakes frequently simplify their role to merely serving as inexpensive raw data repositories, overlooking crucial elements such as data transformation, quality assurance, and security protocols. Consequently, data scientists often find themselves dedicating as much as 80% of their time to the processes of data acquisition, comprehension, and cleansing, which delays their ability to leverage their primary skills effectively. Furthermore, the establishment of traditional Data Lakes tends to occur in isolation by various departments, each utilizing different standards and tools, complicating the implementation of cohesive analytical initiatives. In contrast, Smart Data Lakes address these challenges by offering both architectural and methodological frameworks, alongside a robust toolset designed to create a high-quality data infrastructure. Essential to any contemporary analytics platform, Smart Data Lakes facilitate seamless integration with popular Data Science tools and open-source technologies, including those used for artificial intelligence and machine learning applications. Their cost-effective and scalable storage solutions accommodate a wide range of data types, including unstructured data and intricate data models, thereby enhancing overall analytical capabilities. This adaptability not only streamlines operations but also fosters collaboration across different departments, ultimately leading to more informed decision-making. -
26
Peliqan
Peliqan
$199Peliqan.io provides a data platform that is all-in-one for business teams, IT service providers, startups and scale-ups. No data engineer required. Connect to databases, data warehouses, and SaaS applications. In a spreadsheet interface, you can explore and combine data. Business users can combine multiple data sources, clean data, edit personal copies, and apply transformations. Power users can use SQL on anything, and developers can use Low-code to create interactive data apps, implement writing backs and apply machine intelligence. -
27
Dataleyk
Dataleyk
€0.1 per GBDataleyk serves as a secure, fully-managed cloud data platform tailored for small and medium-sized businesses. Our goal is to simplify Big Data analytics and make it accessible to everyone. Dataleyk acts as the crucial link to achieve your data-driven aspirations. The platform empowers you to quickly establish a stable, flexible, and reliable cloud data lake, requiring minimal technical expertise. You can consolidate all of your company’s data from various sources, utilize SQL for exploration, and create visualizations using your preferred BI tools or our sophisticated built-in graphs. Transform your data warehousing approach with Dataleyk, as our cutting-edge cloud data platform is designed to manage both scalable structured and unstructured data efficiently. Recognizing data as a vital asset, Dataleyk takes security seriously by encrypting all your information and providing on-demand data warehousing options. While achieving zero maintenance may seem challenging, pursuing this goal can lead to substantial improvements in delivery and transformative outcomes. Ultimately, Dataleyk is here to ensure that your data journey is as seamless and efficient as possible. -
28
Azure Data Lake
Microsoft
Azure Data Lake encompasses all necessary features that enable developers, data scientists, and analysts to effortlessly store various types of data, regardless of size or format, while facilitating diverse processing and analytical tasks across different platforms and programming languages. By eliminating the challenges associated with data ingestion and storage, it significantly accelerates the initiation of batch, streaming, and interactive analytics. Additionally, Azure Data Lake is designed to work harmoniously with existing IT infrastructures regarding identity, management, and security, thus simplifying data governance and overall management. It also provides seamless integration with operational databases and data warehouses, allowing users to enhance their current data applications. Drawing from extensive experience with enterprise clients and managing some of the largest data processing and analytics workloads for major Microsoft services such as Office 365, Xbox Live, Azure, Windows, Bing, and Skype, Azure Data Lake effectively addresses a multitude of productivity and scalability obstacles that hinder optimal data utilization. Consequently, organizations can leverage this powerful platform to unlock the full potential of their data assets and drive better decision-making processes. -
29
Narrative
Narrative
$0With your own data shop, create new revenue streams from the data you already have. Narrative focuses on the fundamental principles that make buying or selling data simpler, safer, and more strategic. You must ensure that the data you have access to meets your standards. It is important to know who and how the data was collected. Access new supply and demand easily for a more agile, accessible data strategy. You can control your entire data strategy with full end-to-end access to all inputs and outputs. Our platform automates the most labor-intensive and time-consuming aspects of data acquisition so that you can access new data sources in days instead of months. You'll only ever have to pay for what you need with filters, budget controls and automatic deduplication. -
30
Talend Data Fabric
Qlik
Talend Data Fabric's cloud services are able to efficiently solve all your integration and integrity problems -- on-premises or in cloud, from any source, at any endpoint. Trusted data delivered at the right time for every user. With an intuitive interface and minimal coding, you can easily and quickly integrate data, files, applications, events, and APIs from any source to any location. Integrate quality into data management to ensure compliance with all regulations. This is possible through a collaborative, pervasive, and cohesive approach towards data governance. High quality, reliable data is essential to make informed decisions. It must be derived from real-time and batch processing, and enhanced with market-leading data enrichment and cleaning tools. Make your data more valuable by making it accessible internally and externally. Building APIs is easy with the extensive self-service capabilities. This will improve customer engagement. -
31
AWS Lake Formation
Amazon
AWS Lake Formation is a service designed to streamline the creation of a secure data lake in just a matter of days. A data lake serves as a centralized, carefully organized, and protected repository that accommodates all data, maintaining both its raw and processed formats for analytical purposes. By utilizing a data lake, organizations can eliminate data silos and integrate various analytical approaches, leading to deeper insights and more informed business choices. However, the traditional process of establishing and maintaining data lakes is often burdened with labor-intensive, complex, and time-consuming tasks. This includes activities such as importing data from various sources, overseeing data flows, configuring partitions, enabling encryption and managing encryption keys, defining and monitoring transformation jobs, reorganizing data into a columnar structure, removing duplicate records, and linking related entries. After data is successfully loaded into the data lake, it is essential to implement precise access controls for datasets and continuously monitor access across a broad spectrum of analytics and machine learning tools and services. The comprehensive management of these tasks can significantly enhance the overall efficiency and security of data handling within an organization. -
32
Data Lakes on AWS
Amazon
Numerous customers of Amazon Web Services (AWS) seek a data storage and analytics solution that surpasses the agility and flexibility of conventional data management systems. A data lake has emerged as an innovative and increasingly favored method for storing and analyzing data, as it enables organizations to handle various data types from diverse sources, all within a unified repository that accommodates both structured and unstructured data. The AWS Cloud supplies essential components necessary for customers to create a secure, adaptable, and economical data lake. These components comprise AWS managed services designed to assist in the ingestion, storage, discovery, processing, and analysis of both structured and unstructured data. To aid our customers in constructing their data lakes, AWS provides a comprehensive data lake solution, which serves as an automated reference implementation that establishes a highly available and cost-efficient data lake architecture on the AWS Cloud, complete with an intuitive console for searching and requesting datasets. Furthermore, this solution not only enhances data accessibility but also streamlines the overall data management process for organizations. -
33
Kylo
Teradata
Kylo serves as an open-source platform designed for effective management of enterprise-level data lakes, facilitating self-service data ingestion and preparation while also incorporating robust metadata management, governance, security, and best practices derived from Think Big's extensive experience with over 150 big data implementation projects. It allows users to perform self-service data ingestion complemented by features for data cleansing, validation, and automatic profiling. Users can manipulate data effortlessly using visual SQL and an interactive transformation interface that is easy to navigate. The platform enables users to search and explore both data and metadata, examine data lineage, and access profiling statistics. Additionally, it provides tools to monitor the health of data feeds and services within the data lake, allowing users to track service level agreements (SLAs) and address performance issues effectively. Users can also create batch or streaming pipeline templates using Apache NiFi and register them with Kylo, thereby empowering self-service capabilities. Despite organizations investing substantial engineering resources to transfer data into Hadoop, they often face challenges in maintaining governance and ensuring data quality, but Kylo significantly eases the data ingestion process by allowing data owners to take control through its intuitive guided user interface. This innovative approach not only enhances operational efficiency but also fosters a culture of data ownership within organizations. -
34
Querona
YouNeedIT
We make BI and Big Data analytics easier and more efficient. Our goal is to empower business users, make BI specialists and always-busy business more independent when solving data-driven business problems. Querona is a solution for those who have ever been frustrated by a lack in data, slow or tedious report generation, or a long queue to their BI specialist. Querona has a built-in Big Data engine that can handle increasing data volumes. Repeatable queries can be stored and calculated in advance. Querona automatically suggests improvements to queries, making optimization easier. Querona empowers data scientists and business analysts by giving them self-service. They can quickly create and prototype data models, add data sources, optimize queries, and dig into raw data. It is possible to use less IT. Users can now access live data regardless of where it is stored. Querona can cache data if databases are too busy to query live. -
35
Varada
Varada
Varada offers a cutting-edge big data indexing solution that adeptly balances performance and cost while eliminating the need for data operations. This distinct technology acts as an intelligent acceleration layer within your data lake, which remains the central source of truth and operates within the customer's cloud infrastructure (VPC). By empowering data teams to operationalize their entire data lake, Varada facilitates data democratization while ensuring fast, interactive performance, all without requiring data relocation, modeling, or manual optimization. The key advantage lies in Varada's capability to automatically and dynamically index pertinent data, maintaining the structure and granularity of the original source. Additionally, Varada ensures that any query can keep pace with the constantly changing performance and concurrency demands of users and analytics APIs, while also maintaining predictable cost management. The platform intelligently determines which queries to accelerate and which datasets to index, while also flexibly adjusting the cluster to match demand, thereby optimizing both performance and expenses. This holistic approach to data management not only enhances operational efficiency but also allows organizations to remain agile in an ever-evolving data landscape. -
36
Qubole
Qubole
Qubole stands out as a straightforward, accessible, and secure Data Lake Platform tailored for machine learning, streaming, and ad-hoc analysis. Our comprehensive platform streamlines the execution of Data pipelines, Streaming Analytics, and Machine Learning tasks across any cloud environment, significantly minimizing both time and effort. No other solution matches the openness and versatility in handling data workloads that Qubole provides, all while achieving a reduction in cloud data lake expenses by more than 50 percent. By enabling quicker access to extensive petabytes of secure, reliable, and trustworthy datasets, we empower users to work with both structured and unstructured data for Analytics and Machine Learning purposes. Users can efficiently perform ETL processes, analytics, and AI/ML tasks in a seamless workflow, utilizing top-tier open-source engines along with a variety of formats, libraries, and programming languages tailored to their data's volume, diversity, service level agreements (SLAs), and organizational regulations. This adaptability ensures that Qubole remains a preferred choice for organizations aiming to optimize their data management strategies while leveraging the latest technological advancements. -
37
Huawei Cloud Data Lake Governance Center
Huawei
$428 one-time paymentTransform your big data processes and create intelligent knowledge repositories with the Data Lake Governance Center (DGC), a comprehensive platform for managing all facets of data lake operations, including design, development, integration, quality, and asset management. With its intuitive visual interface, you can establish a robust data lake governance framework that enhances the efficiency of your data lifecycle management. Leverage analytics and metrics to uphold strong governance throughout your organization, while also defining and tracking data standards with the ability to receive real-time alerts. Accelerate the development of data lakes by easily configuring data integrations, models, and cleansing protocols to facilitate the identification of trustworthy data sources. Enhance the overall business value derived from your data assets. DGC enables the creation of tailored solutions for various applications, such as smart government, smart taxation, and smart campuses, while providing valuable insights into sensitive information across your organization. Additionally, DGC empowers businesses to establish comprehensive catalogs, classifications, and terminologies for their data. This holistic approach ensures that data governance is not just a task, but a core aspect of your enterprise's strategy. -
38
Agile Data Engine
Agile Data Engine
Agile Data Engine serves as a robust DataOps platform crafted to optimize the lifecycle of cloud-based data warehouses, encompassing their development, deployment, and management. This solution consolidates data modeling, transformation processes, continuous deployment, workflow orchestration, monitoring, and API integration into a unified SaaS offering. By leveraging a metadata-driven model, it automates the generation of SQL scripts and the workflows for data loading, significantly boosting efficiency and responsiveness in data operations. The platform accommodates a variety of cloud database systems such as Snowflake, Databricks SQL, Amazon Redshift, Microsoft Fabric (Warehouse), Azure Synapse SQL, Azure SQL Database, and Google BigQuery, thus providing considerable flexibility across different cloud infrastructures. Furthermore, its modular data product architecture and pre-built CI/CD pipelines ensure smooth integration and facilitate ongoing delivery, empowering data teams to quickly adjust to evolving business demands. Additionally, Agile Data Engine offers valuable insights and performance metrics related to the data platform, enhancing overall operational transparency and effectiveness. This capability allows organizations to make informed decisions based on real-time data analytics, further driving strategic initiatives. -
39
EntelliFusion
Teksouth
EntelliFusion by Teksouth is a fully managed, end to end solution. EntelliFusion's architecture is a one-stop solution for outfitting a company's data infrastructure. Instead of trying to put together multiple platforms for data prep, data warehouse and governance, and then deploying a lot of IT resources to make it all work, EntelliFusion's architecture offers a single platform. EntelliFusion unites data silos into a single platform that allows for cross-functional KPI's. This creates powerful insights and holistic solutions. EntelliFusion's "military born" technology has been able to withstand the rigorous demands of the USA's top echelon in military operations. It was scaled up across the DOD over twenty years. EntelliFusion is built using the most recent Microsoft technologies and frameworks, which allows it to continue being improved and innovated. EntelliFusion is data-agnostic and infinitely scalable. It guarantees accuracy and performance to encourage end-user tool adoption. -
40
Azure Data Lake Storage
Microsoft
Break down data silos by utilizing a unified storage solution that enhances cost efficiency through tiered storage and effective policy management. Ensure data integrity with Azure Active Directory (Azure AD) authentication and role-based access control (RBAC), while bolstering data protection through robust security measures such as encryption at rest and advanced threat protection. This solution is designed with high security in mind, featuring adaptable protection strategies for data access, encryption, and network control. It serves as a comprehensive platform for data ingestion, processing, and visualization, compatible with prevalent analytics frameworks. Cost effectiveness is achieved by independently scaling storage and compute resources, employing lifecycle policy management, and implementing object-level tiering. With the extensive Azure global infrastructure, you can effortlessly meet varying capacity needs and manage data seamlessly. Furthermore, the system enables the execution of large-scale analytics queries with consistently high performance, ensuring that your data operations remain efficient and effective. -
41
VeloDB
VeloDB
VeloDB, which utilizes Apache Doris, represents a cutting-edge data warehouse designed for rapid analytics on large-scale real-time data. It features both push-based micro-batch and pull-based streaming data ingestion that occurs in mere seconds, alongside a storage engine capable of real-time upserts, appends, and pre-aggregations. The platform delivers exceptional performance for real-time data serving and allows for dynamic interactive ad-hoc queries. VeloDB accommodates not only structured data but also semi-structured formats, supporting both real-time analytics and batch processing capabilities. Moreover, it functions as a federated query engine, enabling seamless access to external data lakes and databases in addition to internal data. The system is designed for distribution, ensuring linear scalability. Users can deploy it on-premises or as a cloud service, allowing for adaptable resource allocation based on workload demands, whether through separation or integration of storage and compute resources. Leveraging the strengths of open-source Apache Doris, VeloDB supports the MySQL protocol and various functions, allowing for straightforward integration with a wide range of data tools, ensuring flexibility and compatibility across different environments. -
42
Iterative
Iterative
AI teams encounter obstacles that necessitate the development of innovative technologies, which we specialize in creating. Traditional data warehouses and lakes struggle to accommodate unstructured data types such as text, images, and videos. Our approach integrates AI with software development, specifically designed for data scientists, machine learning engineers, and data engineers alike. Instead of reinventing existing solutions, we provide a swift and cost-effective route to bring your projects into production. Your data remains securely stored under your control, and model training occurs on your own infrastructure. By addressing the limitations of current data handling methods, we ensure that AI teams can effectively meet their challenges. Our Studio functions as an extension of platforms like GitHub, GitLab, or BitBucket, allowing seamless integration. You can choose to sign up for our online SaaS version or reach out for an on-premise installation tailored to your needs. This flexibility allows organizations of all sizes to adopt our solutions effectively. -
43
The Autonomous Data Engine
Infoworks
Today, there is a considerable amount of discussion surrounding how top-tier companies are leveraging big data to achieve a competitive edge. Your organization aims to join the ranks of these industry leaders. Nevertheless, the truth is that more than 80% of big data initiatives fail to reach production due to the intricate and resource-heavy nature of implementation, often extending over months or even years. The technology involved is multifaceted, and finding individuals with the requisite skills can be prohibitively expensive or nearly impossible. Moreover, automating the entire data workflow from its source to its end use is essential for success. This includes automating the transition of data and workloads from outdated Data Warehouse systems to modern big data platforms, as well as managing and orchestrating intricate data pipelines in a live environment. In contrast, alternative methods like piecing together various point solutions or engaging in custom development tend to be costly, lack flexibility, consume excessive time, and necessitate specialized expertise to build and sustain. Ultimately, adopting a more streamlined approach to big data management can not only reduce costs but also enhance operational efficiency. -
44
Microsoft Fabric
Microsoft
$156.334/month/ 2CU Connecting every data source with analytics services on a single AI-powered platform will transform how people access, manage, and act on data and insights. All your data. All your teams. All your teams in one place. Create an open, lake-centric hub to help data engineers connect data from various sources and curate it. This will eliminate sprawl and create custom views for all. Accelerate analysis through the development of AI models without moving data. This reduces the time needed by data scientists to deliver value. Microsoft Teams, Microsoft Excel, and Microsoft Teams are all great tools to help your team innovate faster. Connect people and data responsibly with an open, scalable solution. This solution gives data stewards more control, thanks to its built-in security, compliance, and governance. -
45
datuum.ai
Datuum
Datuum is an AI-powered data integration tool that offers a unique solution for organizations looking to streamline their data integration process. With our pre-trained AI engine, Datuum simplifies customer data onboarding by allowing for automated integration from various sources without coding. This reduces data preparation time and helps establish resilient connectors, ultimately freeing up time for organizations to focus on generating insights and improving the customer experience. At Datuum, we have over 40 years of experience in data management and operations, and we've incorporated our expertise into the core of our product. Our platform is designed to address the critical challenges faced by data engineers and managers while being accessible and user-friendly for non-technical specialists. By reducing up to 80% of the time typically spent on data-related tasks, Datuum can help organizations optimize their data management processes and achieve more efficient outcomes. -
46
SplineCloud
SplineCloud
SplineCloud serves as a collaborative knowledge management platform aimed at enhancing the identification, formalization, and sharing of structured and reusable knowledge within the realms of science and engineering. This innovative platform allows users to systematically arrange their data into organized repositories, ensuring that it is easily discoverable and accessible. Among its features are tools like an online plot digitizer, which helps in extracting data from graphical representations, and an interactive curve fitting tool, enabling users to establish functional relationships within datasets through the application of smooth spline functions. Additionally, users have the capability to incorporate datasets and relationships into their models and calculations by directly accessing them via the SplineCloud API or employing open source client libraries compatible with Python and MATLAB. By supporting the creation of reusable engineering and analytical applications, the platform aims to minimize design process redundancies, safeguard expert knowledge, and enhance decision-making efficiency. Ultimately, SplineCloud stands as a vital resource for researchers and engineers seeking to optimize their workflows and improve knowledge sharing in their fields. -
47
Amazon Security Lake
Amazon
$0.75 per GB per monthAmazon Security Lake seamlessly consolidates security information from various AWS environments, SaaS platforms, on-premises systems, and cloud sources into a specialized data lake within your account. This service enables you to gain a comprehensive insight into your security data across the entire organization, enhancing the safeguarding of your workloads, applications, and data. By utilizing the Open Cybersecurity Schema Framework (OCSF), which is an open standard, Security Lake effectively normalizes and integrates security data from AWS along with a wide array of enterprise security data sources. You have the flexibility to use your preferred analytics tools to examine your security data while maintaining full control and ownership over it. Furthermore, you can centralize visibility into data from both cloud and on-premises sources across your AWS accounts and Regions. This approach not only streamlines your data management at scale but also ensures consistency in your security data by adhering to an open standard, allowing for more efficient and effective security practices across your organization. Ultimately, this solution empowers organizations to respond to security threats more swiftly and intelligently. -
48
The Qlik Data Integration platform designed for managed data lakes streamlines the delivery of consistently updated, reliable, and trusted data sets for business analytics purposes. Data engineers enjoy the flexibility to swiftly incorporate new data sources, ensuring effective management at every stage of the data lake pipeline, which includes real-time data ingestion, refinement, provisioning, and governance. It serves as an intuitive and comprehensive solution for the ongoing ingestion of enterprise data into widely-used data lakes in real-time. Employing a model-driven strategy, it facilitates the rapid design, construction, and management of data lakes, whether on-premises or in the cloud. Furthermore, it provides a sophisticated enterprise-scale data catalog that enables secure sharing of all derived data sets with business users, thereby enhancing collaboration and data-driven decision-making across the organization. This comprehensive approach not only optimizes data management but also empowers users by making valuable insights readily accessible.
-
49
Scalytics Connect
Scalytics
$0Scalytics Connect combines data mesh and in-situ data processing with polystore technology, resulting in increased data scalability, increased data processing speed, and multiplying data analytics capabilities without losing privacy or security. You take advantage of all your data without wasting time with data copy or movement, enable innovation with enhanced data analytics, generative AI and federated learning (FL) developments. Scalytics Connect enables any organization to directly apply data analytics, train machine learning (ML) or generative AI (LLM) models on their installed data architecture. -
50
Utilihive
Greenbird Integration Technology
Utilihive, a cloud-native big-data integration platform, is offered as a managed (SaaS) service. Utilihive, the most popular Enterprise-iPaaS (iPaaS), is specifically designed for utility and energy usage scenarios. Utilihive offers both the technical infrastructure platform (connectivity and integration, data ingestion and data lake management) and preconfigured integration content or accelerators. (connectors and data flows, orchestrations and utility data model, energy services, monitoring and reporting dashboards). This allows for faster delivery of data-driven services and simplifies operations.