Best Apache Trafodion Alternatives in 2025
Find the top alternatives to Apache Trafodion currently available. Compare ratings, reviews, pricing, and features of Apache Trafodion alternatives in 2025. Slashdot lists the best Apache Trafodion alternatives on the market that offer competing products that are similar to Apache Trafodion. Sort through Apache Trafodion alternatives below to make the best choice for your needs
-
1
MongoDB Atlas
MongoDB
1,640 RatingsMongoDB Atlas stands out as the leading cloud database service available, offering unparalleled data distribution and seamless mobility across all major platforms, including AWS, Azure, and Google Cloud. Its built-in automation tools enhance resource management and workload optimization, making it the go-to choice for modern application deployment. As a fully managed service, it ensures best-in-class automation and adheres to established practices that support high availability, scalability, and compliance with stringent data security and privacy regulations. Furthermore, MongoDB Atlas provides robust security controls tailored for your data needs, allowing for the integration of enterprise-grade features that align with existing security protocols and compliance measures. With preconfigured elements for authentication, authorization, and encryption, you can rest assured that your data remains secure and protected at all times. Ultimately, MongoDB Atlas not only simplifies deployment and scaling in the cloud but also fortifies your data with comprehensive security features that adapt to evolving requirements. -
2
MongoDB
MongoDB
Free 21 RatingsMongoDB is a versatile, document-oriented, distributed database designed specifically for contemporary application developers and the cloud landscape. It offers unparalleled productivity, enabling teams to ship and iterate products 3 to 5 times faster thanks to its adaptable document data model and a single query interface that caters to diverse needs. Regardless of whether you're serving your very first customer or managing 20 million users globally, you'll be able to meet your performance service level agreements in any setting. The platform simplifies high availability, safeguards data integrity, and adheres to the security and compliance requirements for your critical workloads. Additionally, it features a comprehensive suite of cloud database services that support a broad array of use cases, including transactional processing, analytics, search functionality, and data visualizations. Furthermore, you can easily deploy secure mobile applications with built-in edge-to-cloud synchronization and automatic resolution of conflicts. MongoDB's flexibility allows you to operate it in various environments, from personal laptops to extensive data centers, making it a highly adaptable solution for modern data management challenges. -
3
RavenDB
RavenDB
RavenDB is a pioneering NoSQL Document Database. It is fully transactional (ACID across your database and within your cluster). Our open-source distributed database has high availability and high performance, with minimal administration. It is an all-in-one database that is easy to use. This reduces the need to add on tools or support for developers to increase developer productivity and speed up your project's production. In minutes, you can create and secure a data cluster and deploy it in the cloud, on-premise, or in a hybrid environment. RavenDB offers a Database as a Service, which allows you to delegate all database operations to us, so you can concentrate on your application. RavenDB's built-in storage engine Voron can perform at speeds of up to 1,000,000 reads per second and 150,000 write per second on a single node. This allows you to improve your application's performance by using simple commodity hardware. -
4
TiDB Cloud
PingCAP
$0.95 per hourA cloud-native distributed HTAP database designed for seamless scaling and immediate analytics as a fully managed service, featuring a serverless tier that allows for the rapid deployment of the HTAP database within seconds. Scale transparently and elastically to hundreds of nodes for essential workloads without needing to modify your business logic. Leverage your existing SQL knowledge while preserving your relational structure and global ACID transactions, effortlessly managing hybrid workloads. The system comes with a powerful built-in analytics engine that enables operational data analysis without the requirement for ETL processes. Expand to hundreds of nodes while ensuring ACID compliance, all without the hassle of sharding or downtime interruptions. Data accuracy is upheld even with simultaneous updates to the same data source, making it reliable for high-demand environments. TiDB’s MySQL compatibility enhances productivity and accelerates your applications' time-to-market, while also facilitating the easy migration of data from current MySQL environments without necessitating code rewrites. This innovative solution streamlines your database management, allowing teams to focus on development rather than infrastructure concerns. -
5
JanusGraph
JanusGraph
JanusGraph stands out as a highly scalable graph database designed for efficiently storing and querying extensive graphs that can comprise hundreds of billions of vertices and edges, all managed across a cluster of multiple machines. This project, which operates under The Linux Foundation, boasts contributions from notable organizations such as Expero, Google, GRAKN.AI, Hortonworks, IBM, and Amazon. It offers both elastic and linear scalability to accommodate an expanding data set and user community. Key features include robust data distribution and replication methods to enhance performance and ensure fault tolerance. Additionally, JanusGraph supports multi-datacenter high availability and provides hot backups for data security. All these capabilities are available without any associated costs, eliminating the necessity for purchasing commercial licenses, as it is entirely open source and governed by the Apache 2 license. Furthermore, JanusGraph functions as a transactional database capable of handling thousands of simultaneous users performing complex graph traversals in real time. It ensures support for both ACID properties and eventual consistency, catering to various operational needs. Beyond online transactional processing (OLTP), JanusGraph also facilitates global graph analytics (OLAP) through its integration with Apache Spark, making it a versatile tool for data analysis and visualization. This combination of features makes JanusGraph a powerful choice for organizations looking to leverage graph data effectively. -
6
Oceanbase
Oceanbase
OceanBase simplifies the intricacies associated with traditional sharding databases, allowing for seamless scaling of your database to accommodate increasing workloads, whether that be through horizontal, vertical, or tenant-level adjustments. This capability supports on-the-fly scaling and ensures linear performance enhancement without experiencing downtime or requiring application modifications in high-concurrency situations, thereby guaranteeing faster and more dependable responses for performance-sensitive critical tasks. It is designed to empower mission-critical workloads and performance-driven applications across both OLTP and OLAP environments, all while upholding complete MySQL compatibility. With a commitment to 100% ACID compliance, it inherently supports distributed transactions along with multi-replica strong synchronization, leveraging Paxos protocols. Users can expect outstanding query performance that is essential for mission-critical and time-sensitive operations. Furthermore, this architecture effectively eliminates downtime, ensuring that your vital workloads remain consistently accessible and operational. Ultimately, OceanBase stands as a robust solution for businesses looking to enhance their database performance and reliability. -
7
Apache Ignite
Apache Ignite
Utilize Ignite as a conventional SQL database by employing JDBC drivers, ODBC drivers, or the dedicated SQL APIs that cater to Java, C#, C++, Python, and various other programming languages. Effortlessly perform operations such as joining, grouping, aggregating, and ordering your distributed data, whether it is stored in memory or on disk. By integrating Ignite as an in-memory cache or data grid across multiple external databases, you can enhance the performance of your existing applications by a factor of 100. Envision a cache that allows for SQL querying, transactional operations, and computational tasks. Develop contemporary applications capable of handling both transactional and analytical workloads by leveraging Ignite as a scalable database that exceeds the limits of available memory. Ignite smartly allocates memory for frequently accessed data and resorts to disk storage when dealing with less frequently accessed records. This allows for the execution of kilobyte-sized custom code across vast petabytes of data. Transform your Ignite database into a distributed supercomputer, optimized for rapid calculations, intricate analytics, and machine learning tasks, ensuring that your applications remain responsive and efficient even under heavy loads. Embrace the potential of Ignite to revolutionize your data processing capabilities and drive innovation within your projects. -
8
NuoDB
NuoDB
As the trend towards distributed applications and architectures continues to grow, it is essential for your database to adapt accordingly. Discover the flexibility of a distributed SQL database that allows you to deploy it wherever and whenever you need, tailored to your specific requirements. Transition your current SQL applications to a robust multi-node setup that can effortlessly scale both up and down as demand fluctuates. Our Transaction Engines (TEs) and Storage Managers (SMs) collaborate seamlessly to maintain ACID compliance across various nodes. By implementing a distributed architecture, your database can withstand the failure of one or more nodes without compromising access. You can strategically deploy TEs and SMs to align with your changing workload demands or across the various environments utilized by your teams, whether in private clouds, public clouds, hybrid setups, or across multiple cloud services. This adaptability ensures that your database remains resilient and efficient in a dynamic technological landscape. -
9
SingleStore
SingleStore
$0.69 per hour 1 RatingSingleStore, previously known as MemSQL, is a highly scalable and distributed SQL database that can operate in any environment. It is designed to provide exceptional performance for both transactional and analytical tasks while utilizing well-known relational models. This database supports continuous data ingestion, enabling operational analytics critical for frontline business activities. With the capacity to handle millions of events each second, SingleStore ensures ACID transactions and allows for the simultaneous analysis of vast amounts of data across various formats, including relational SQL, JSON, geospatial, and full-text search. It excels in data ingestion performance at scale and incorporates built-in batch loading alongside real-time data pipelines. Leveraging ANSI SQL, SingleStore offers rapid query responses for both current and historical data, facilitating ad hoc analysis through business intelligence tools. Additionally, it empowers users to execute machine learning algorithms for immediate scoring and conduct geoanalytic queries in real-time, thereby enhancing decision-making processes. Furthermore, its versatility makes it a strong choice for organizations looking to derive insights from diverse data types efficiently. -
10
Apache Geode
Apache
Develop high-speed, data-centric applications that can dynamically adapt to performance needs regardless of scale. Leverage the distinctive technology of Apache Geode, which integrates sophisticated methods for data replication, partitioning, and distributed processing. With a database-like consistency model, Apache Geode guarantees dependable transaction handling and employs a shared-nothing architecture that supports remarkably low latency, even under high concurrency. The platform allows for seamless data partitioning (sharding) and replication across nodes, enabling performance to grow in accordance with demand. Reliability is bolstered by maintaining redundant in-memory copies along with disk-based persistence. Additionally, it features rapid write-ahead logging (WAL) persistence, optimized for quick parallel recovery of individual nodes or the entire cluster, ensuring robust performance even during failures. This combination of features not only enhances efficiency but also significantly improves overall system resilience. -
11
HerdDB
Diennea
HerdDB is a distributed SQL database developed in Java, making it embeddable within any Java Virtual Machine. It has been specifically optimized for rapid write operations and efficient access patterns for primary key read and updates. Capable of managing numerous tables, HerdDB allows for straightforward addition and removal of hosts as well as flexible reconfiguration of tablespaces to effectively balance loads across multiple systems. Utilizing Apache Zookeeper and Apache Bookkeeper, HerdDB achieves a fully replicated architecture that eliminates any single point of failure. At its core, HerdDB shares similarities with key-value NoSQL databases, but it also incorporates an SQL abstraction layer along with JDBC Driver support, allowing users to easily transition existing applications to its platform. Additionally, at Diennea, we have created EmailSuccess, a highly efficient Mail Transfer Agent designed to deliver millions of emails per hour to recipients worldwide, showcasing the capabilities of our technology. This seamless integration of advanced database management and email delivery systems reflects our commitment to providing powerful solutions for modern data handling. -
12
Citus
Citus Data
$0.27 per hourCitus enhances the beloved Postgres experience by integrating the capability of distributed tables, while remaining fully open source. It now supports both schema-based and row-based sharding, alongside compatibility with Postgres 16. You can scale Postgres effectively by distributing both data and queries, starting with a single Citus node and seamlessly adding more nodes and rebalancing shards as your needs expand. By utilizing parallelism, maintaining a larger dataset in memory, increasing I/O bandwidth, and employing columnar compression, you can significantly accelerate query performance by up to 300 times or even higher. As an extension rather than a fork, Citus works with the latest versions of Postgres, allowing you to utilize your existing SQL tools and build on your Postgres knowledge. Additionally, you can alleviate infrastructure challenges by managing both transactional and analytical tasks within a single database system. Citus is available for free download as open source, giving you the option to self-manage it while actively contributing to its development through GitHub. Shift your focus from database concerns to application development by running your applications on Citus within the Azure Cosmos DB for PostgreSQL environment, making your workflow more efficient. -
13
Apache Phoenix
Apache Software Foundation
FreeApache Phoenix provides low-latency OLTP and operational analytics on Hadoop by merging the advantages of traditional SQL with the flexibility of NoSQL. It utilizes HBase as its underlying storage, offering full ACID transaction support alongside late-bound, schema-on-read capabilities. Fully compatible with other Hadoop ecosystem tools such as Spark, Hive, Pig, Flume, and MapReduce, it establishes itself as a reliable data platform for OLTP and operational analytics through well-defined, industry-standard APIs. When a SQL query is executed, Apache Phoenix converts it into a series of HBase scans, managing these scans to deliver standard JDBC result sets seamlessly. The framework's direct interaction with the HBase API, along with the implementation of coprocessors and custom filters, enables performance metrics that can reach milliseconds for simple queries and seconds for larger datasets containing tens of millions of rows. This efficiency positions Apache Phoenix as a formidable choice for businesses looking to enhance their data processing capabilities in a Big Data environment. -
14
TiDB
PingCAP
Open-source, cloud-native distributed SQL database that allows for elastic scale and real time analytics. TiDB is supported by a wealth open-source data migration tools within the ecosystem. This allows you to choose your own vendor without worrying about lock-in. TiDB was designed to scale SQL without compromising your application. HTAP database platform which enables real-time situation analysis and decision making on transactional data. It eliminates friction between IT goals and business goals. TiDB is ACID compliant and strongly consistent. TiDB can be used as a scaled-out MySQL database using familiar SQL syntaxes. TiDB automatically shards data so you don’t have to do this manually. To scale horizontally or elastically to support your business growth, you can add new nodes. TiDB automates the ETL process, and automatically recovers from errors. -
15
Apache HBase
The Apache Software Foundation
Utilize Apache HBase™ when you require immediate and random read/write capabilities for your extensive data sets. This initiative aims to manage exceptionally large tables that can contain billions of rows across millions of columns on clusters built from standard hardware. It features automatic failover capabilities between RegionServers to ensure reliability. Additionally, it provides an intuitive Java API for client interaction, along with a Thrift gateway and a RESTful Web service that accommodates various data encoding formats, including XML, Protobuf, and binary. Furthermore, it supports the export of metrics through the Hadoop metrics system, enabling data to be sent to files or Ganglia, as well as via JMX for enhanced monitoring and management. With these features, HBase stands out as a robust solution for handling big data challenges effectively. -
16
AntDB
Antdb AsiaInfo
FreeAntDB is a cloud-native, distributed relational database created by AsiaInfo Technologies, specifically engineered to excel in high-performance online transaction processing and analytical processing tasks. With a reach of over 1 billion subscribers across 24 provinces in China, AntDB effectively manages extensive business data related to telecommunications, internet access, financial transactions, and billing systems. Its innovative cloud-native architecture allows for online scalability, consistent data integrity, and robust high availability across multiple data centers. Furthermore, AntDB adheres to SQL2016 standards and integrates effortlessly with various domestic ecosystems, including leading CPUs and operating systems. The platform provides essential features such as automatic high availability, the ability to expand capacity elastically online, and kernel-level read/write splitting, which optimizes traffic management during peak usage periods. This versatile database system has seen successful implementation in various sectors, including telecommunications, finance, transportation, and energy, showcasing its wide-ranging applicability and importance in modern data management solutions. Additionally, AntDB continues to evolve, adapting to emerging technologies and industry demands. -
17
Datomic
Datomic
FreeCreate adaptable, decentralized systems that can utilize the complete history of your vital data rather than just its latest version. You can either build these systems on your current infrastructure or opt to transition directly to cloud solutions. Gaining critical insights requires understanding the entire narrative of your data, not merely its most recent status. Datomic maintains a repository of unchangeable facts, offering your applications a robust consistency while facilitating horizontal read scalability along with integrated caching features. Since facts are never modified directly and all data is preserved by default, you benefit from inherent auditing capabilities and the option to query historical information. Additionally, this system supports fully ACID-compliant transactions. The information model of Datomic is designed to accommodate a diverse range of use cases. With the Datomic Peer library, you can disseminate immutable data across your application nodes, ensuring in-memory access to your information. Alternatively, leverage the client library to establish lightweight nodes tailored for microservice architectures, enabling seamless integration and enhanced performance. By utilizing these capabilities, you can achieve a comprehensive understanding of your data landscape. -
18
Yugabyte
Yugabyte
Introducing a premier high-performance distributed SQL database that is open source and designed specifically for cloud-native environments, ideal for powering applications on a global internet scale. Experience minimal latency, often in the single-digit milliseconds, allowing you to create incredibly fast cloud applications by executing queries directly from the database itself. Handle immense workloads effortlessly, achieving millions of transactions per second and accommodating several terabytes of data on each node. With geo-distribution capabilities, you can deploy your database across various regions and cloud platforms, utilizing synchronous or multi-master replication for optimal performance. Tailored for modern cloud-native architectures, YugabyteDB accelerates the development, deployment, and management of applications like never before. Enjoy enhanced developer agility by tapping into the full capabilities of PostgreSQL-compatible SQL alongside distributed ACID transactions. Maintain resilient services with assured continuous availability, even amidst failures in compute, storage, or network infrastructure. Scale your resources on demand, easily adding or removing nodes as needed, and eliminate the necessity for over-provisioned clusters. Additionally, benefit from significantly reduced user latency, ensuring a seamless experience for your app users. -
19
Google Cloud Spanner
Google
Scale effortlessly and without constraints: This globally distributed database, compliant with ACID principles, automatically manages replicas, sharding, and transaction processing, allowing you to rapidly adapt to varying usage patterns and drive your product's success. Built on Google's robust and reliable infrastructure, Cloud Spanner has been proven through its extensive use by numerous Google services that cater to billions of users. It boasts an impressive availability rate of up to 99.999%, ensuring zero downtime during planned maintenance or schema updates. By simplifying tasks that often go unappreciated, Cloud Spanner provides a more straightforward experience for IT administrators and database administrators, who frequently find themselves overwhelmed with database management. Now, with just a few clicks, you can create or scale a globally replicated database, significantly lowering your database maintenance costs. As a result, teams can focus more on innovation rather than routine operational challenges. -
20
Couchbase
Couchbase
Couchbase distinguishes itself from other NoSQL databases by delivering an enterprise-grade, multicloud to edge solution that is equipped with the powerful features essential for mission-critical applications on a platform that is both highly scalable and reliable. This distributed cloud-native database operates seamlessly in contemporary dynamic settings, accommodating any cloud environment, whether it be customer-managed or a fully managed service. Leveraging open standards, Couchbase merges the advantages of NoSQL with the familiar structure of SQL, thereby facilitating a smoother transition from traditional mainframe and relational databases. Couchbase Server serves as a versatile, distributed database that integrates the benefits of relational database capabilities, including SQL and ACID transactions, with the adaptability of JSON, all built on a foundation that is remarkably fast and scalable. Its applications span various industries, catering to needs such as user profiles, dynamic product catalogs, generative AI applications, vector search, high-speed caching, and much more, making it an invaluable asset for organizations seeking efficiency and innovation. -
21
CockroachDB
Cockroach Labs
1 RatingCockroachDB: Cloud-native distributed SQL. Your cloud applications deserve a cloud-native database. Cloud-based apps and services need a database that can scale across clouds, reduces operational complexity, and improves reliability. CockroachDB provides resilient, distributed SQL with ACID transactions. Data partitioned by geography is also available. Combining CockroachDB and orchestration tools such as Mesosphere DC/OS and Kubernetes to automate mission-critical applications can speed up operations. -
22
GridGain
GridGain Systems
This robust enterprise platform, built on Apache Ignite, delivers lightning-fast in-memory performance and extensive scalability for data-heavy applications, ensuring real-time access across various datastores and applications. Transitioning from Ignite to GridGain requires no code modifications, allowing for secure deployment of clusters on a global scale without experiencing any downtime. You can conduct rolling upgrades on your production clusters without affecting application availability, and replicate data across geographically dispersed data centers to balance workloads and mitigate the risk of outages in specific regions. Your data remains secure both at rest and in transit, while compliance with security and privacy regulations is guaranteed. Seamless integration with your organization’s existing authentication and authorization frameworks is straightforward, and comprehensive auditing of data and user activities can be enabled. Additionally, you can establish automated schedules for both full and incremental backups, ensuring that restoring your cluster to its most stable state is achievable through snapshots and point-in-time recovery. This platform not only promotes efficiency but also enhances resilience and security for all data operations. -
23
TigerGraph
TigerGraph
1 RatingThe TigerGraph™, a graph platform based on its Native Parallel Graph™, technology, represents the next evolution in graph database evolution. It is a complete, distributed parallel graph computing platform that supports web-scale data analytics in real time. Combining the best ideas (MapReduce, Massively Parallel Processing, and fast data compression/decompression) with fresh development, TigerGraph delivers what you've been waiting for: the speed, scalability, and deep exploration/querying capability to extract more business value from your data. -
24
Objectivity/DB
Objectivity, Inc.
See Pricing Details... 1 RatingObjectivity/DB (or Object Database Management System) is a distributed, highly scalable, high-performance, and highly scalable Object Database (ODBMS). It excels at complex data handling, including many types of connections between objects as well as many variants. Objectivity/DB can also be used as a graph database that is highly scalable and high-performance. Its DO query language allows for standard data retrieval queries and high-performance path-based navigational inquiries. Objectivity/DB is a distributed data base that presents a single logical view of its managed data. Data can be hosted on one machine or distributed over up to 65,000 machines. Machines can be connected to one another. Objectivity/DB can be used on 32- or 64-bit processors that run Windows, Linux, and Mac OS X. APIs are C++, C# Java, Python, and Java. All platforms and languages are interoperable. A C++ program on Linux can store objects and a Java program on Mac OS X can read them. -
25
IBM Cloudant
IBM
IBM Cloudant® is a robust distributed database tailored for managing the demanding workloads commonly associated with large, rapidly expanding web and mobile applications. Offered as a fully managed service on IBM Cloud™, backed by an SLA, Cloudant allows for the independent scaling of both throughput and storage. You can quickly deploy an instance, set up databases, and adjust throughput capacity and data storage as needed to align with your application’s demands. Furthermore, it ensures data security through encryption, providing optional user-defined key management via IBM Key Protect, while also allowing integration with IBM Identity and Access Management. With a focus on performance and disaster recovery, Cloudant guarantees continuous availability by distributing data across multiple availability zones and six regions, making it an ideal choice for critical applications. This distribution not only enhances app performance but also safeguards against potential data loss, ensuring your applications run smoothly and reliably. -
26
Apache Accumulo
Apache Corporation
Apache Accumulo enables users to efficiently store and manage extensive data sets across a distributed cluster. It relies on Apache Hadoop's HDFS for data storage and utilizes Apache ZooKeeper to achieve consensus among nodes. While many users engage with Accumulo directly, it also serves as a foundational data store for various open-source projects. To gain deeper insights into Accumulo, you can explore the Accumulo tour, consult the user manual, and experiment with the provided example code. Should you have any inquiries, please do not hesitate to reach out to us. Accumulo features a programming mechanism known as Iterators, which allows for the modification of key/value pairs at different stages of the data management workflow. Each key/value pair within Accumulo is assigned a unique security label that restricts query outcomes based on user permissions. The system operates on a cluster configuration that can incorporate one or more HDFS instances, providing flexibility as data storage needs evolve. Additionally, nodes within the cluster can be dynamically added or removed in response to changes in the volume of data stored, enhancing scalability and resource management. -
27
PolarDB-X
Alibaba Cloud
$10,254.44 per yearPolarDB-X has proven its reliability during the Tmall Double 11 shopping events and has assisted clients in various sectors, including finance, logistics, energy, e-commerce, and public services, in overcoming their business obstacles. It offers scalable storage solutions that can expand linearly to accommodate petabyte-scale demands, thereby eliminating the constraints associated with traditional standalone databases. Additionally, it features massively parallel processing (MPP) capabilities that greatly enhance the efficiency of performing complex analyses and executing queries on large datasets. Furthermore, it employs sophisticated algorithms to distribute data across multiple storage nodes, which effectively minimizes the amount of data held within individual tables. This advanced architecture not only optimizes performance but also ensures that businesses can handle their data needs flexibly and efficiently. -
28
VoltDB
VoltDB
Volt Active Data is a sophisticated data platform designed to streamline your entire technology stack, enhancing speed and cost-effectiveness, enabling applications and businesses to effortlessly scale in alignment with the extremely low latency service level agreements (SLAs) demanded by 5G, IoT, edge computing, and future innovations. It is tailored to complement your current big data assets, including NoSQL, Hadoop, Kubernetes, Kafka, and conventional databases or data warehouses, as it replaces the multiple layers usually necessary for making contextual decisions on streaming data with a singular, cohesive layer that facilitates ingestion to action in under 10 milliseconds. The digital landscape is inundated with data that is generated, stored, often overlooked, and ultimately discarded. "Active Data" refers to the information that requires immediate action for businesses to derive value from it. Numerous traditional and NoSQL data storage solutions are available for managing such data; however, there exists also a category of data that can be monetized, provided that swift action is taken to 'influence the moment' before the opportunity slips away. By harnessing the capabilities of Volt Active Data, organizations can ensure they are not merely collecting data but effectively leveraging it for real-time decision-making and strategic advantage. -
29
Google Cloud Bigtable
Google
Google Cloud Bigtable provides a fully managed, scalable NoSQL data service that can handle large operational and analytical workloads. Cloud Bigtable is fast and performant. It's the storage engine that grows with your data, from your first gigabyte up to a petabyte-scale for low latency applications and high-throughput data analysis. Seamless scaling and replicating: You can start with one cluster node and scale up to hundreds of nodes to support peak demand. Replication adds high availability and workload isolation to live-serving apps. Integrated and simple: Fully managed service that easily integrates with big data tools such as Dataflow, Hadoop, and Dataproc. Development teams will find it easy to get started with the support for the open-source HBase API standard. -
30
Greenplum
Greenplum Database
Greenplum Database® stands out as a sophisticated, comprehensive, and open-source data warehouse solution. It excels in providing swift and robust analytics on data volumes that reach petabyte scales. Designed specifically for big data analytics, Greenplum Database is driven by a highly advanced cost-based query optimizer that ensures exceptional performance for analytical queries on extensive data sets. This project operates under the Apache 2 license, and we extend our gratitude to all current contributors while inviting new ones to join our efforts. In the Greenplum Database community, every contribution is valued, regardless of its size, and we actively encourage diverse forms of involvement. This platform serves as an open-source, massively parallel data environment tailored for analytics, machine learning, and artificial intelligence applications. Users can swiftly develop and implement models aimed at tackling complex challenges in fields such as cybersecurity, predictive maintenance, risk management, and fraud detection, among others. Dive into the experience of a fully integrated, feature-rich open-source analytics platform that empowers innovation. -
31
FoundationDB
FoundationDB
FoundationDB operates as a multi-model database, enabling the storage of various data types within a single system. Its Key-Value Store component ensures that all information is securely stored, distributed, and replicated. The installation, scaling, and management of FoundationDB are straightforward, benefiting from a distributed architecture that effectively scales and handles failures while maintaining the behavior of a singular ACID database. It delivers impressive performance on standard hardware, making it capable of managing substantial workloads at a minimal cost. With years of production use, FoundationDB has been reinforced through practical experience and insights gained over time. Additionally, its backup system is unparalleled, utilizing a deterministic simulation engine for testing purposes. We invite you to become an active member of our open-source community, where you can engage in both technical and user discussions on our forums and discover ways to contribute to the project. Your involvement can help shape the future of FoundationDB! -
32
InterSystems IRIS
InterSystems
23 RatingsInterSystems IRIS, a cloud-first data platform, is a multi-model transactional database management engine, application development platform, interoperability engine and open analytics platform. InterSystems IRIS offers a variety of APIs that allow you to work with transactional persistent data simultaneously. These include key-value, relational and object, document, and multidimensional. Data can be managed by SQL, Java, node.js, .NET, C++, Python, and native server-side ObjectScript language. InterSystems IRIS features an Interoperability engine as well as modules for building AI solutions. InterSystems IRIS features horizontal scalability (sharding and ECP), and High Availability features such as Business intelligence, transaction support and backup. -
33
ScyllaDB
ScyllaDB
ScyllaDB serves as an ideal database solution for applications that demand high performance and minimal latency, catering specifically to data-intensive needs. It empowers teams to fully utilize the growing computing capabilities of modern infrastructures, effectively removing obstacles to scaling as data volumes expand. Distinct from other database systems, ScyllaDB stands out as a distributed NoSQL database that is completely compatible with both Apache Cassandra and Amazon DynamoDB, while incorporating significant architectural innovations that deliver outstanding user experiences at significantly reduced costs. Over 400 transformative companies, including Disney+ Hotstar, Expedia, FireEye, Discord, Zillow, Starbucks, Comcast, and Samsung, rely on ScyllaDB to tackle their most challenging database requirements. Furthermore, ScyllaDB is offered in various formats, including a free open-source version, a fully-supported enterprise solution, and a fully managed database-as-a-service (DBaaS) available across multiple cloud platforms, ensuring flexibility for diverse user needs. This versatility makes it an attractive choice for organizations looking to optimize their database performance. -
34
Hazelcast
Hazelcast
In-Memory Computing Platform. Digital world is different. Microseconds are important. The world's most important organizations rely on us for powering their most sensitive applications at scale. If they meet the current requirement for immediate access, new data-enabled apps can transform your business. Hazelcast solutions can be used to complement any database and deliver results that are much faster than traditional systems of record. Hazelcast's distributed architecture ensures redundancy and continuous cluster up-time, as well as always available data to support the most demanding applications. The capacity grows with demand without compromising performance and availability. The cloud delivers the fastest in-memory data grid and third-generation high speed event processing. -
35
Grakn
Grakn Labs
The foundation of creating intelligent systems lies in the database, and Grakn serves as a sophisticated knowledge graph database. It features an incredibly user-friendly and expressive data schema that allows for the definition of hierarchies, hyper-entities, hyper-relations, and rules to establish detailed knowledge models. With its intelligent language, Grakn executes logical inferences on data types, relationships, attributes, and intricate patterns in real-time across distributed and stored data. It also offers built-in distributed analytics algorithms, such as Pregel and MapReduce, which can be accessed using straightforward queries within the language. The system provides a high level of abstraction over low-level patterns, simplifying the expression of complex constructs while optimizing query execution automatically. By utilizing Grakn KGMS and Workbase, enterprises can effectively scale their knowledge graphs. Furthermore, this distributed database is engineered to function efficiently across a network of computers through techniques like partitioning and replication, ensuring seamless scalability and performance. -
36
BigchainDB
BigchainDB
BigchainDB functions as a database infused with blockchain features, offering high throughput, low latency, advanced query capabilities, decentralized governance, permanent data storage, and integrated asset management. This platform enables both developers and businesses to create blockchain proof-of-concepts, applications, and platforms, catering to a diverse array of industries and practical applications. Instead of enhancing existing blockchain technology, BigchainDB uniquely merges a large-scale distributed database with blockchain traits—such as decentralized governance, data immutability, and digital asset transfer. Its architecture eliminates any single point of control or failure, utilizing a federation of voting nodes to establish a peer-to-peer network. Users can execute any MongoDB query to sift through the entirety of stored transactions, assets, metadata, and blocks, leveraging the robust capabilities of MongoDB as its backbone. This innovative approach not only streamlines data management but also enriches the user experience by ensuring reliability and efficiency in digital asset transactions. -
37
Azure Cosmos DB
Microsoft
Azure Cosmos DB offers a fully managed NoSQL database solution tailored for contemporary application development, ensuring single-digit millisecond response times and an impressive availability rate of 99.999 percent, all supported by service level agreements. This service provides automatic, instantaneous scalability and supports open-source APIs for MongoDB and Cassandra, allowing for rapid data operations. With its turnkey multi-master global distribution, users can experience swift read and write operations from any location around the globe. Additionally, Azure Cosmos DB enables organizations to accelerate their decision-making processes by facilitating near-real-time analytics and AI capabilities on the operational data housed within the database. Furthermore, Azure Synapse Link for Azure Cosmos DB integrates effortlessly with Azure Synapse Analytics, ensuring smooth performance without necessitating data movement or compromising the efficiency of the operational data store, enhancing the overall functionality of your data strategy. This integration not only streamlines workflows but also empowers users to derive insights more efficiently. -
38
Fauna
Fauna
FreeFauna is a data API that supports rich clients with serverless backends. It provides a web-native interface that supports GraphQL, custom business logic, frictionless integration to the serverless ecosystem, and a multi-cloud architecture that you can trust and grow with. -
39
Nebula Graph
vesoft
Designed specifically for handling super large-scale graphs with latency measured in milliseconds, this graph database continues to engage with the community for its preparation, promotion, and popularization. Nebula Graph ensures that access is secured through role-based access control, allowing only authenticated users. The database supports various types of storage engines and its query language is adaptable, enabling the integration of new algorithms. By providing low latency for both read and write operations, Nebula Graph maintains high throughput, effectively simplifying even the most intricate data sets. Its shared-nothing distributed architecture allows for linear scalability, making it an efficient choice for expanding businesses. The SQL-like query language is not only user-friendly but also sufficiently robust to address complex business requirements. With features like horizontal scalability and a snapshot capability, Nebula Graph assures high availability, even during failures. Notably, major internet companies such as JD, Meituan, and Xiaohongshu have successfully implemented Nebula Graph in their production environments, showcasing its reliability and performance in real-world applications. This widespread adoption highlights the database's effectiveness in meeting the demands of large-scale data management. -
40
Apache Sentry
Apache Software Foundation
Apache Sentry™ serves as a robust system for implementing detailed role-based authorization for both data and metadata within a Hadoop cluster environment. Achieving Top-Level Apache project status after graduating from the Incubator in March 2016, Apache Sentry is recognized for its effectiveness in managing granular authorization. It empowers users and applications to have precise control over access privileges to data stored in Hadoop, ensuring that only authenticated entities can interact with sensitive information. Compatibility extends to a range of frameworks, including Apache Hive, Hive Metastore/HCatalog, Apache Solr, Impala, and HDFS, though its primary focus is on Hive table data. Designed as a flexible and pluggable authorization engine, Sentry allows for the creation of tailored authorization rules that assess and validate access requests for various Hadoop resources. Its modular architecture increases its adaptability, making it capable of supporting a diverse array of data models within the Hadoop ecosystem. This flexibility positions Sentry as a vital tool for organizations aiming to manage their data security effectively. -
41
GaussDB
Huawei Cloud
$2,586.04 per monthGaussDB (for MySQL) represents a cutting-edge, enterprise-level distributed database service that is compatible with MySQL. It features a distinct architecture that separates compute and storage, utilizing data functions virtualization (DFV) storage which can automatically scale to accommodate up to 128 TB per database instance. The risk of data loss is essentially eliminated, and it is capable of handling millions of QPS throughputs while supporting cross-AZ deployments. This service effectively merges the high performance and dependability of commercial databases with the adaptability of open-source solutions. By decoupling compute and storage and connecting them via RDMA, along with implementing a "log as database" approach, users can achieve performance levels that are seven times greater than those of traditional open-source databases. Additionally, to enhance read capacity and performance, you can easily integrate up to 15 read replicas for a primary node within just minutes. GaussDB (for MySQL) ensures full compatibility with MySQL, allowing for a smooth migration of existing MySQL databases without the need for extensive application reconstruction or sharding, making it an ideal choice for businesses looking to upgrade their database systems. Overall, this innovative service provides an efficient solution for modern database management needs. -
42
Apache Kylin
Apache Software Foundation
Apache Kylin™ is a distributed, open-source Analytical Data Warehouse designed for Big Data, aimed at delivering OLAP (Online Analytical Processing) capabilities in the modern big data landscape. By enhancing multi-dimensional cube technology and precalculation methods on platforms like Hadoop and Spark, Kylin maintains a consistent query performance, even as data volumes continue to expand. This innovation reduces query response times from several minutes to just milliseconds, effectively reintroducing online analytics into the realm of big data. Capable of processing over 10 billion rows in under a second, Kylin eliminates the delays previously associated with report generation, facilitating timely decision-making. It seamlessly integrates data stored on Hadoop with popular BI tools such as Tableau, PowerBI/Excel, MSTR, QlikSense, Hue, and SuperSet, significantly accelerating business intelligence operations on Hadoop. As a robust Analytical Data Warehouse, Kylin supports ANSI SQL queries on Hadoop/Spark and encompasses a wide array of ANSI SQL functions. Moreover, Kylin’s architecture allows it to handle thousands of simultaneous interactive queries with minimal resource usage, ensuring efficient analytics even under heavy loads. This efficiency positions Kylin as an essential tool for organizations seeking to leverage their data for strategic insights. -
43
Apache Ranger
The Apache Software Foundation
Apache Ranger™ serves as a framework designed to facilitate, oversee, and manage extensive data security within the Hadoop ecosystem. The goal of Ranger is to implement a thorough security solution throughout the Apache Hadoop landscape. With the introduction of Apache YARN, the Hadoop platform can effectively accommodate a genuine data lake architecture, allowing businesses to operate various workloads in a multi-tenant setting. As the need for data security in Hadoop evolves, it must adapt to cater to diverse use cases regarding data access, while also offering a centralized framework for the administration of security policies and the oversight of user access. This centralized security management allows for the execution of all security-related tasks via a unified user interface or through REST APIs. Additionally, Ranger provides fine-grained authorization, enabling specific actions or operations with any Hadoop component or tool managed through a central administration tool. It standardizes authorization methods across all Hadoop components and enhances support for various authorization strategies, including role-based access control, thereby ensuring a robust security framework. By doing so, it significantly strengthens the overall security posture of organizations leveraging Hadoop technologies. -
44
Hadoop
Apache Software Foundation
The Apache Hadoop software library serves as a framework for the distributed processing of extensive data sets across computer clusters, utilizing straightforward programming models. It is built to scale from individual servers to thousands of machines, each providing local computation and storage capabilities. Instead of depending on hardware for high availability, the library is engineered to identify and manage failures within the application layer, ensuring that a highly available service can run on a cluster of machines that may be susceptible to disruptions. Numerous companies and organizations leverage Hadoop for both research initiatives and production environments. Users are invited to join the Hadoop PoweredBy wiki page to showcase their usage. The latest version, Apache Hadoop 3.3.4, introduces several notable improvements compared to the earlier major release, hadoop-3.2, enhancing its overall performance and functionality. This continuous evolution of Hadoop reflects the growing need for efficient data processing solutions in today's data-driven landscape. -
45
Oracle Big Data SQL Cloud Service empowers companies to swiftly analyze information across various platforms such as Apache Hadoop, NoSQL, and Oracle Database, all while utilizing their existing SQL expertise, security frameworks, and applications, achieving remarkable performance levels. This solution streamlines data science initiatives and facilitates the unlocking of data lakes, making the advantages of Big Data accessible to a wider audience of end users. It provides a centralized platform for users to catalog and secure data across Hadoop, NoSQL systems, and Oracle Database. With seamless integration of metadata, users can execute queries that combine data from Oracle Database with that from Hadoop and NoSQL databases. Additionally, the service includes utilities and conversion routines that automate the mapping of metadata stored in HCatalog or the Hive Metastore to Oracle Tables. Enhanced access parameters offer administrators the ability to customize column mapping and govern data access behaviors effectively. Furthermore, the capability to support multiple clusters allows a single Oracle Database to query various Hadoop clusters and NoSQL systems simultaneously, thereby enhancing data accessibility and analytics efficiency. This comprehensive approach ensures that organizations can maximize their data insights without compromising on performance or security.