What Integrates with Apache Spark?

Find out what Apache Spark integrations exist in 2025. Learn what software and services currently integrate with Apache Spark, and sort them by reviews, cost, features, and more. Below is a list of products that Apache Spark currently integrates with:

  • 1
    Vertex AI Reviews

    Vertex AI

    Google

    Free ($300 in free credits)
    673 Ratings
    See Software
    Learn More
    Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
  • 2
    Scalytics Connect Reviews
    Scalytics Connect combines data mesh and in-situ data processing with polystore technology, resulting in increased data scalability, increased data processing speed, and multiplying data analytics capabilities without losing privacy or security. You take advantage of all your data without wasting time with data copy or movement, enable innovation with enhanced data analytics, generative AI and federated learning (FL) developments. Scalytics Connect enables any organization to directly apply data analytics, train machine learning (ML) or generative AI (LLM) models on their installed data architecture.
  • 3
    Kubernetes Reviews
    Kubernetes (K8s) is a powerful open-source platform designed to automate the deployment, scaling, and management of applications that are containerized. By organizing containers into manageable groups, it simplifies the processes of application management and discovery. Drawing from over 15 years of experience in handling production workloads at Google, Kubernetes also incorporates the best practices and innovative ideas from the wider community. Built on the same foundational principles that enable Google to efficiently manage billions of containers weekly, it allows for scaling without necessitating an increase in operational personnel. Whether you are developing locally or operating a large-scale enterprise, Kubernetes adapts to your needs, providing reliable and seamless application delivery regardless of complexity. Moreover, being open-source, Kubernetes offers the flexibility to leverage on-premises, hybrid, or public cloud environments, facilitating easy migration of workloads to the most suitable infrastructure. This adaptability not only enhances operational efficiency but also empowers organizations to respond swiftly to changing demands in their environments.
  • 4
    Sematext Cloud Reviews
    Top Pick
    Sematext Cloud provides all-in-one observability solutions for modern software-based businesses. It provides key insights into both front-end and back-end performance. Sematext includes infrastructure, synthetic monitoring, transaction tracking, log management, and real user & synthetic monitoring. Sematext provides full-stack visibility for businesses by quickly and easily exposing key performance issues through a single Cloud solution or On-Premise.
  • 5
    Jupyter Notebook Reviews
    The Jupyter Notebook is a web-based open-source tool that enables users to create and distribute documents featuring live code, visualizations, equations, and written explanations. Its applications are diverse and encompass tasks such as data cleaning and transformation, statistical modeling, numerical simulations, data visualization, machine learning, among others, showcasing its versatility in various fields. Additionally, it serves as an excellent platform for collaboration and sharing insights within the data science community.
  • 6
    Amazon EC2 Reviews
    Amazon Elastic Compute Cloud (Amazon EC2) is a cloud service that offers flexible and secure computing capabilities. Its primary aim is to simplify large-scale cloud computing for developers. With an easy-to-use web service interface, Amazon EC2 allows users to quickly obtain and configure computing resources with ease. Users gain full control over their computing power while utilizing Amazon’s established computing framework. The service offers an extensive range of compute options, networking capabilities (up to 400 Gbps), and tailored storage solutions that enhance price and performance specifically for machine learning initiatives. Developers can create, test, and deploy macOS workloads on demand. Furthermore, users can scale their capacity dynamically as requirements change, all while benefiting from AWS's pay-as-you-go pricing model. This infrastructure enables rapid access to the necessary resources for high-performance computing (HPC) applications, resulting in enhanced speed and cost efficiency. In essence, Amazon EC2 ensures a secure, dependable, and high-performance computing environment that caters to the diverse demands of modern businesses. Overall, it stands out as a versatile solution for various computing needs across different industries.
  • 7
    Apache Cassandra Reviews

    Apache Cassandra

    Apache Software Foundation

    1 Rating
    When seeking a database that ensures both scalability and high availability without sacrificing performance, Apache Cassandra stands out as an ideal option. Its linear scalability paired with proven fault tolerance on standard hardware or cloud services positions it as an excellent choice for handling mission-critical data effectively. Additionally, Cassandra's superior capability to replicate data across several datacenters not only enhances user experience by reducing latency but also offers reassurance in the event of regional failures. This combination of features makes it a robust solution for organizations that prioritize data resilience and efficiency.
  • 8
    SingleStore Reviews

    SingleStore

    SingleStore

    $0.69 per hour
    1 Rating
    SingleStore, previously known as MemSQL, is a highly scalable and distributed SQL database that can operate in any environment. It is designed to provide exceptional performance for both transactional and analytical tasks while utilizing well-known relational models. This database supports continuous data ingestion, enabling operational analytics critical for frontline business activities. With the capacity to handle millions of events each second, SingleStore ensures ACID transactions and allows for the simultaneous analysis of vast amounts of data across various formats, including relational SQL, JSON, geospatial, and full-text search. It excels in data ingestion performance at scale and incorporates built-in batch loading alongside real-time data pipelines. Leveraging ANSI SQL, SingleStore offers rapid query responses for both current and historical data, facilitating ad hoc analysis through business intelligence tools. Additionally, it empowers users to execute machine learning algorithms for immediate scoring and conduct geoanalytic queries in real-time, thereby enhancing decision-making processes. Furthermore, its versatility makes it a strong choice for organizations looking to derive insights from diverse data types efficiently.
  • 9
    Dataiku Reviews
    Dataiku serves as a sophisticated platform for data science and machine learning, aimed at facilitating teams in the construction, deployment, and management of AI and analytics projects on a large scale. It enables a diverse range of users, including data scientists and business analysts, to work together in developing data pipelines, crafting machine learning models, and preparing data through various visual and coding interfaces. Supporting the complete AI lifecycle, Dataiku provides essential tools for data preparation, model training, deployment, and ongoing monitoring of projects. Additionally, the platform incorporates integrations that enhance its capabilities, such as generative AI, thereby allowing organizations to innovate and implement AI solutions across various sectors. This adaptability positions Dataiku as a valuable asset for teams looking to harness the power of AI effectively.
  • 10
    JupyterLab Reviews
    Project Jupyter is dedicated to the creation of open-source tools, standards, and services that facilitate interactive computing in numerous programming languages. At the heart of this initiative is JupyterLab, a web-based interactive development environment designed for Jupyter notebooks, coding, and data manipulation. JupyterLab offers remarkable flexibility, allowing users to customize and organize the interface to cater to various workflows in fields such as data science, scientific research, and machine learning. Its extensibility and modular nature enable developers to create plugins that introduce new features and seamlessly integrate with existing components. The Jupyter Notebook serves as an open-source web application enabling users to produce and share documents that incorporate live code, mathematical equations, visualizations, and descriptive text. Common applications of Jupyter include data cleaning and transformation, numerical simulations, statistical analysis, data visualization, and machine learning, among others. Supporting over 40 programming languages—including popular ones like Python, R, Julia, and Scala—Jupyter continues to be a valuable resource for researchers and developers alike, fostering collaborative and innovative approaches to computing challenges.
  • 11
    Apache Hive Reviews

    Apache Hive

    Apache Software Foundation

    1 Rating
    Apache Hive is a data warehouse solution that enables the efficient reading, writing, and management of substantial datasets stored across distributed systems using SQL. It allows users to apply structure to pre-existing data in storage. To facilitate user access, it comes equipped with a command line interface and a JDBC driver. As an open-source initiative, Apache Hive is maintained by dedicated volunteers at the Apache Software Foundation. Initially part of the Apache® Hadoop® ecosystem, it has since evolved into an independent top-level project. We invite you to explore the project further and share your knowledge to enhance its development. Users typically implement traditional SQL queries through the MapReduce Java API, which can complicate the execution of SQL applications on distributed data. However, Hive simplifies this process by offering a SQL abstraction that allows for the integration of SQL-like queries, known as HiveQL, into the underlying Java framework, eliminating the need to delve into the complexities of the low-level Java API. This makes working with large datasets more accessible and efficient for developers.
  • 12
    Archon Data Store Reviews
    The Archon Data Store™ is a robust and secure platform built on open-source principles, tailored for archiving and managing extensive data lakes. Its compliance capabilities and small footprint facilitate large-scale data search, processing, and analysis across structured, unstructured, and semi-structured data within an organization. By merging the essential characteristics of both data warehouses and data lakes, Archon Data Store creates a seamless and efficient platform. This integration effectively breaks down data silos, enhancing data engineering, analytics, data science, and machine learning workflows. With its focus on centralized metadata, optimized storage solutions, and distributed computing, the Archon Data Store ensures the preservation of data integrity. Additionally, its cohesive strategies for data management, security, and governance empower organizations to operate more effectively and foster innovation at a quicker pace. By offering a singular platform for both archiving and analyzing all organizational data, Archon Data Store not only delivers significant operational efficiencies but also positions your organization for future growth and agility.
  • 13
    LogIsland Reviews
    The LogIsland platform serves as the core of Hurence's real-time analytics system, enabling the collection of factory events from the IIoT as well as data from websites. Hurence asserts that both factories and companies can be monitored and understood in real time through the myriad of events they experience, where each occurrence, such as a sales order, the production of an item by a robot, or the delivery of a product, qualifies as an event. Essentially, everything constitutes an event, and the LogIsland platform facilitates the capture of these events, organizing them within a message bus capable of handling substantial volumes. This system allows for real-time analysis with a range of plug-and-play analyzers that vary from basic functions like counting and alerting to advanced artificial intelligence models designed for predictive analytics and the identification of anomalies or defects. It stands as your versatile tool for real-time event analysis, equipped with custom analyzers tailored for two specific areas: web analytics and Industry 4.0, thereby enhancing decision-making processes across various domains.
  • 14
    Activeeon ProActive Reviews
    ProActive Parallel Suite, a member of the OW2 Open Source Community for acceleration and orchestration, seamlessly integrated with the management and operation of high-performance Clouds (Private, Public with bursting capabilities). ProActive Parallel Suite platforms offer high-performance workflows and application parallelization, enterprise Scheduling & Orchestration, and dynamic management of private Heterogeneous Grids & Clouds. Our users can now simultaneously manage their Enterprise Cloud and accelerate and orchestrate all of their enterprise applications with the ProActive platform.
  • 15
    Alluxio Reviews

    Alluxio

    Alluxio

    26¢ Per SW Instance Per Hour
    Alluxio stands out as the pioneering open-source technology for data orchestration tailored for analytics and AI within cloud environments. It effectively connects data-centric applications with various storage systems, allowing seamless data retrieval from the storage layer, thus enhancing accessibility and enabling a unified interface for multiple storage solutions. The innovative memory-first tiered architecture of Alluxio facilitates data access at unprecedented speeds, significantly surpassing traditional methods. Picture yourself as an IT leader with the power to select from a diverse range of services available in both public cloud and on-premises settings. Furthermore, envision having the capability to scale your storage for data lakes while maintaining control over data locality and ensuring robust protection for your organization. To support these aspirations, NetApp and Alluxio are collaborating to empower clients in navigating the evolving landscape of modernizing their data architecture, with an emphasis on minimizing operational complexity for analytics, machine learning, and AI-driven workflows. This partnership aims to unlock new possibilities for businesses striving to harness the full potential of their data assets.
  • 16
    Dagster+ Reviews

    Dagster+

    Dagster Labs

    $0
    Dagster is the cloud-native open-source orchestrator for the whole development lifecycle, with integrated lineage and observability, a declarative programming model, and best-in-class testability. It is the platform of choice data teams responsible for the development, production, and observation of data assets. With Dagster, you can focus on running tasks, or you can identify the key assets you need to create using a declarative approach. Embrace CI/CD best practices from the get-go: build reusable components, spot data quality issues, and flag bugs early.
  • 17
    Union Cloud Reviews

    Union Cloud

    Union.ai

    Free (Flyte)
    Union.ai Benefits: - Accelerated Data Processing & ML: Union.ai significantly speeds up data processing and machine learning. - Built on Trusted Open-Source: Leverages the robust open-source project Flyte™, ensuring a reliable and tested foundation for your ML projects. - Kubernetes Efficiency: Harnesses the power and efficiency of Kubernetes along with enhanced observability and enterprise features. - Optimized Infrastructure: Facilitates easier collaboration among Data and ML teams on optimized infrastructures, boosting project velocity. - Breaks Down Silos: Tackles the challenges of distributed tooling and infrastructure by simplifying work-sharing across teams and environments with reusable tasks, versioned workflows, and an extensible plugin system. - Seamless Multi-Cloud Operations: Navigate the complexities of on-prem, hybrid, or multi-cloud setups with ease, ensuring consistent data handling, secure networking, and smooth service integrations. - Cost Optimization: Keeps a tight rein on your compute costs, tracks usage, and optimizes resource allocation even across distributed providers and instances, ensuring cost-effectiveness.
  • 18
    Apache Iceberg Reviews

    Apache Iceberg

    Apache Software Foundation

    Free
    Iceberg is an advanced format designed for managing extensive analytical tables efficiently. It combines the dependability and ease of SQL tables with the capabilities required for big data, enabling multiple engines such as Spark, Trino, Flink, Presto, Hive, and Impala to access and manipulate the same tables concurrently without issues. The format allows for versatile SQL operations to incorporate new data, modify existing records, and execute precise deletions. Additionally, Iceberg can optimize read performance by eagerly rewriting data files or utilize delete deltas to facilitate quicker updates. It also streamlines the complex and often error-prone process of generating partition values for table rows while automatically bypassing unnecessary partitions and files. Fast queries do not require extra filtering, and the structure of the table can be adjusted dynamically as data and query patterns evolve, ensuring efficiency and adaptability in data management. This adaptability makes Iceberg an essential tool in modern data workflows.
  • 19
    Oxla Reviews

    Oxla

    Oxla

    $50 per CPU core / monthly
    Designed specifically for optimizing compute, memory, and storage, Oxla serves as a self-hosted data warehouse that excels in handling large-scale, low-latency analytics while providing strong support for time-series data. While cloud data warehouses may suit many, they are not universally applicable; as operations expand, the ongoing costs of cloud computing can surpass initial savings on infrastructure, particularly in regulated sectors that demand comprehensive data control beyond mere VPC and BYOC setups. Oxla surpasses both traditional and cloud-based warehouses by maximizing efficiency, allowing for the scalability of expanding datasets with predictable expenses, whether on-premises or in various cloud environments. Deployment, execution, and maintenance of Oxla can be easily managed using Docker and YAML, enabling a range of workloads to thrive within a singular, self-hosted data warehouse. In this way, Oxla provides a tailored solution for organizations seeking both efficiency and control in their data management strategies.
  • 20
    Style Intelligence Reviews
    Style Intelligence from InetSoft is a complete business intelligence platform that empowers companies with the ability to analyze, monitor, report and collaborate on business and operational data coming from different sources in real-time. Its top features include a data mashup Data Block architecture and professional atomic block modeling tool. There is also a database write-back option. Style Intelligence is robust and easy-to-use. It offers granular security, multitenancy support, multiple integrations, and is fully scalable.
  • 21
    Instaclustr Reviews

    Instaclustr

    Instaclustr

    $20 per node per month
    Instaclustr, the Open Source-as a Service company, delivers reliability at scale. We provide database, search, messaging, and analytics in an automated, trusted, and proven managed environment. We help companies focus their internal development and operational resources on creating cutting-edge customer-facing applications. Instaclustr is a cloud provider that works with AWS, Heroku Azure, IBM Cloud Platform, Azure, IBM Cloud and Google Cloud Platform. The company is certified by SOC 2 and offers 24/7 customer support.
  • 22
    IBM Cloud SQL Query Reviews

    IBM Cloud SQL Query

    IBM

    $5.00/Terabyte-Month
    Experience serverless and interactive data querying with IBM Cloud Object Storage, enabling you to analyze your data directly at its source without the need for ETL processes, databases, or infrastructure management. IBM Cloud SQL Query leverages Apache Spark, a high-performance, open-source data processing engine designed for quick and flexible analysis, allowing SQL queries without requiring ETL or schema definitions. You can easily perform data analysis on your IBM Cloud Object Storage via our intuitive query editor and REST API. With a pay-per-query pricing model, you only incur costs for the data that is scanned, providing a cost-effective solution that allows for unlimited queries. To enhance both savings and performance, consider compressing or partitioning your data. Furthermore, IBM Cloud SQL Query ensures high availability by executing queries across compute resources located in various facilities. Supporting multiple data formats, including CSV, JSON, and Parquet, it also accommodates standard ANSI SQL for your querying needs, making it a versatile tool for data analysis. This capability empowers organizations to make data-driven decisions more efficiently than ever before.
  • 23
    PubSub+ Platform Reviews
    Solace is a specialist in Event-Driven-Architecture (EDA), with two decades of experience providing enterprises with highly reliable, robust and scalable data movement technology based on the publish & subscribe (pub/sub) pattern. Solace technology enables the real-time data flow behind many of the conveniences you take for granted every day such as immediate loyalty rewards from your credit card, the weather data delivered to your mobile phone, real-time airplane movements on the ground and in the air, and timely inventory updates to some of your favourite department stores and grocery chains, not to mention that Solace technology also powers many of the world's leading stock exchanges and betting houses. Aside from rock solid technology, stellar customer support is one of the biggest reasons customers select Solace, and stick with them.
  • 24
    Coginiti Reviews

    Coginiti

    Coginiti

    $189/user/year
    Coginiti is the AI-enabled enterprise Data Workspace that empowers everyone to get fast, consistent answers to any business questions. Coginiti helps you find and search for metrics that are approved for your use case, accelerating the lifecycle of analytic development from development to certification. Coginiti integrates the functionality needed to build, approve and curate analytics for reuse across all business domains, while adhering your data governance policies and standards. Coginiti’s collaborative data workspace is trusted by teams in the insurance, healthcare, financial services and retail/consumer packaged goods industries to deliver value to customers.
  • 25
    Rational BI Reviews

    Rational BI

    Rational BI

    $129 per month
    Allocate less time to data preparation and focus more on data analysis. By doing so, you can create visually appealing and precise reports while consolidating all aspects of data collection, analytics, and data science within a unified platform that is accessible to everyone in the company. Import your data seamlessly, regardless of its source. Whether your objective is to generate scheduled reports from Excel spreadsheets, cross-reference information across different files and databases, or convert your data into SQL-queryable formats, Rational BI offers a comprehensive suite of tools to meet your needs. Uncover the insights concealed within your data, make it readily available, and gain an edge over your competitors. Elevate your organization’s analytical capabilities with business intelligence that simplifies the process of locating the most current data and enables analysis through an interface that appeals to both seasoned data scientists and everyday data users. This approach ensures that all team members can leverage data effectively, fostering a culture of informed decision-making throughout the organization.
  • 26
    Azure Data Science Virtual Machines Reviews
    DSVMs, or Data Science Virtual Machines, are pre-configured Azure Virtual Machine images equipped with a variety of widely-used tools for data analysis, machine learning, and AI training. They ensure a uniform setup across teams, encouraging seamless collaboration and sharing of resources while leveraging Azure's scalability and management features. Offering a near-zero setup experience, these VMs provide a fully cloud-based desktop environment tailored for data science applications. They facilitate rapid and low-friction deployment suitable for both classroom settings and online learning environments. Users can execute analytics tasks on diverse Azure hardware configurations, benefiting from both vertical and horizontal scaling options. Moreover, the pricing structure allows individuals to pay only for the resources they utilize, ensuring cost-effectiveness. With readily available GPU clusters that come pre-configured for deep learning tasks, users can hit the ground running. Additionally, the VMs include various examples, templates, and sample notebooks crafted or validated by Microsoft, which aids in the smooth onboarding process for numerous tools and capabilities, including but not limited to Neural Networks through frameworks like PyTorch and TensorFlow, as well as data manipulation using R, Python, Julia, and SQL Server. This comprehensive package not only accelerates the learning curve for newcomers but also enhances productivity for seasoned data scientists.
  • 27
    Riak TS Reviews
    Riak®, TS is an enterprise-grade NoSQL Time Series Database that is specifically designed for IoT data and Time Series data. It can ingest, transform, store, and analyze massive amounts of time series information. Riak TS is designed to be faster than Cassandra. Riak TS masterless architecture can read and write data regardless of network partitions or hardware failures. Data is evenly distributed throughout the Riak ring. By default, there are three copies of your data. This ensures that at least one copy is available for reading operations. Riak TS is a distributed software system that does not have a central coordinator. It is simple to set up and use. It is easy to add or remove nodes from a cluster thanks to the masterless architecture. Riak TS's masterless architecture makes it easy for you to add or remove nodes from your cluster. Adding nodes made of commodity hardware to your cluster can help you achieve predictable and almost linear scale.
  • 28
    IBM Analytics Engine Reviews
    IBM Analytics Engine offers a unique architecture for Hadoop clusters by separating the compute and storage components. Rather than relying on a fixed cluster with nodes that serve both purposes, this engine enables users to utilize an object storage layer, such as IBM Cloud Object Storage, and to dynamically create computing clusters as needed. This decoupling enhances the flexibility, scalability, and ease of maintenance of big data analytics platforms. Built on a stack that complies with ODPi and equipped with cutting-edge data science tools, it integrates seamlessly with the larger Apache Hadoop and Apache Spark ecosystems. Users can define clusters tailored to their specific application needs, selecting the suitable software package, version, and cluster size. They have the option to utilize the clusters for as long as necessary and terminate them immediately after job completion. Additionally, users can configure these clusters with third-party analytics libraries and packages, and leverage IBM Cloud services, including machine learning, to deploy their workloads effectively. This approach allows for a more responsive and efficient handling of data processing tasks.
  • 29
    Prophecy Reviews

    Prophecy

    Prophecy

    $299 per month
    Prophecy expands accessibility for a wider range of users, including visual ETL developers and data analysts, by allowing them to easily create pipelines through a user-friendly point-and-click interface combined with a few SQL expressions. While utilizing the Low-Code designer to construct workflows, you simultaneously generate high-quality, easily readable code for Spark and Airflow, which is then seamlessly integrated into your Git repository. The platform comes equipped with a gem builder, enabling rapid development and deployment of custom frameworks, such as those for data quality, encryption, and additional sources and targets that enhance the existing capabilities. Furthermore, Prophecy ensures that best practices and essential infrastructure are offered as managed services, simplifying your daily operations and overall experience. With Prophecy, you can achieve high-performance workflows that leverage the cloud's scalability and performance capabilities, ensuring that your projects run efficiently and effectively. This powerful combination of features makes it an invaluable tool for modern data workflows.
  • 30
    BentoML Reviews
    Deploy your machine learning model in the cloud within minutes using a consolidated packaging format that supports both online and offline operations across various platforms. Experience a performance boost with throughput that is 100 times greater than traditional flask-based model servers, achieved through our innovative micro-batching technique. Provide exceptional prediction services that align seamlessly with DevOps practices and integrate effortlessly with widely-used infrastructure tools. The unified deployment format ensures high-performance model serving while incorporating best practices for DevOps. This service utilizes the BERT model, which has been trained with the TensorFlow framework to effectively gauge the sentiment of movie reviews. Our BentoML workflow eliminates the need for DevOps expertise, automating everything from prediction service registration to deployment and endpoint monitoring, all set up effortlessly for your team. This creates a robust environment for managing substantial ML workloads in production. Ensure that all models, deployments, and updates are easily accessible and maintain control over access through SSO, RBAC, client authentication, and detailed auditing logs, thereby enhancing both security and transparency within your operations. With these features, your machine learning deployment process becomes more efficient and manageable than ever before.
  • 31
    Flyte Reviews

    Flyte

    Union.ai

    Free
    Flyte is a robust platform designed for automating intricate, mission-critical data and machine learning workflows at scale. It simplifies the creation of concurrent, scalable, and maintainable workflows, making it an essential tool for data processing and machine learning applications. Companies like Lyft, Spotify, and Freenome have adopted Flyte for their production needs. At Lyft, Flyte has been a cornerstone for model training and data processes for more than four years, establishing itself as the go-to platform for various teams including pricing, locations, ETA, mapping, and autonomous vehicles. Notably, Flyte oversees more than 10,000 unique workflows at Lyft alone, culminating in over 1,000,000 executions each month, along with 20 million tasks and 40 million container instances. Its reliability has been proven in high-demand environments such as those at Lyft and Spotify, among others. As an entirely open-source initiative licensed under Apache 2.0 and backed by the Linux Foundation, it is governed by a committee representing multiple industries. Although YAML configurations can introduce complexity and potential errors in machine learning and data workflows, Flyte aims to alleviate these challenges effectively. This makes Flyte not only a powerful tool but also a user-friendly option for teams looking to streamline their data operations.
  • 32
    Google Cloud Vertex AI Workbench Reviews
    Experience a unified development platform that streamlines the entire data science process. With a native capability to analyze your data, you can minimize the disruptions caused by switching between different services. Transition seamlessly from data to large-scale training, allowing you to build and train models five times faster than conventional notebooks. Enhance your model development process through straightforward integration with Vertex AI services. Gain simplified access to your data while enjoying in-notebook functionalities for machine learning through BigQuery, Dataproc, Spark, and Vertex AI connections. Harness the potential of limitless computing with Vertex AI training for effective experimentation and prototyping, facilitating the journey from data to large-scale training. By utilizing Vertex AI Workbench, you can manage your training and deployment workflows on Vertex AI from a centralized location. This Jupyter-based platform offers a fully managed, scalable, enterprise-ready computing infrastructure complete with security measures and user management features. Additionally, you can explore your data and train machine learning models effortlessly through easy connections to Google Cloud's extensive big data solutions, thereby ensuring a seamless and efficient workflow.
  • 33
    Comet Reviews

    Comet

    Comet

    $179 per user per month
    Manage and optimize models throughout the entire ML lifecycle. This includes experiment tracking, monitoring production models, and more. The platform was designed to meet the demands of large enterprise teams that deploy ML at scale. It supports any deployment strategy, whether it is private cloud, hybrid, or on-premise servers. Add two lines of code into your notebook or script to start tracking your experiments. It works with any machine-learning library and for any task. To understand differences in model performance, you can easily compare code, hyperparameters and metrics. Monitor your models from training to production. You can get alerts when something is wrong and debug your model to fix it. You can increase productivity, collaboration, visibility, and visibility among data scientists, data science groups, and even business stakeholders.
  • 34
    DQOps Reviews

    DQOps

    DQOps

    $499 per month
    DQOps is a data quality monitoring platform for data teams that helps detect and address quality issues before they impact your business. Track data quality KPIs on data quality dashboards and reach a 100% data quality score. DQOps helps monitor data warehouses and data lakes on the most popular data platforms. DQOps offers a built-in list of predefined data quality checks verifying key data quality dimensions. The extensibility of the platform allows you to modify existing checks or add custom, business-specific checks as needed. The DQOps platform easily integrates with DevOps environments and allows data quality definitions to be stored in a source repository along with the data pipeline code.
  • 35
    ELCA Smart Data Lake Builder Reviews
    Traditional Data Lakes frequently simplify their role to merely serving as inexpensive raw data repositories, overlooking crucial elements such as data transformation, quality assurance, and security protocols. Consequently, data scientists often find themselves dedicating as much as 80% of their time to the processes of data acquisition, comprehension, and cleansing, which delays their ability to leverage their primary skills effectively. Furthermore, the establishment of traditional Data Lakes tends to occur in isolation by various departments, each utilizing different standards and tools, complicating the implementation of cohesive analytical initiatives. In contrast, Smart Data Lakes address these challenges by offering both architectural and methodological frameworks, alongside a robust toolset designed to create a high-quality data infrastructure. Essential to any contemporary analytics platform, Smart Data Lakes facilitate seamless integration with popular Data Science tools and open-source technologies, including those used for artificial intelligence and machine learning applications. Their cost-effective and scalable storage solutions accommodate a wide range of data types, including unstructured data and intricate data models, thereby enhancing overall analytical capabilities. This adaptability not only streamlines operations but also fosters collaboration across different departments, ultimately leading to more informed decision-making.
  • 36
    BigLake Reviews

    BigLake

    Google

    $5 per TB
    BigLake serves as a storage engine that merges the functionalities of data warehouses and lakes, allowing BigQuery and open-source frameworks like Spark to efficiently access data while enforcing detailed access controls. It enhances query performance across various multi-cloud storage systems and supports open formats, including Apache Iceberg. Users can maintain a single version of data, ensuring consistent features across both data warehouses and lakes. With its capacity for fine-grained access management and comprehensive governance over distributed data, BigLake seamlessly integrates with open-source analytics tools and embraces open data formats. This solution empowers users to conduct analytics on distributed data, regardless of its storage location or method, while selecting the most suitable analytics tools, whether they be open-source or cloud-native, all based on a singular data copy. Additionally, it offers fine-grained access control for open-source engines such as Apache Spark, Presto, and Trino, along with formats like Parquet. As a result, users can execute high-performing queries on data lakes driven by BigQuery. Furthermore, BigLake collaborates with Dataplex, facilitating scalable management and logical organization of data assets. This integration not only enhances operational efficiency but also simplifies the complexities of data governance in large-scale environments.
  • 37
    HStreamDB Reviews
    A streaming database is specifically designed to efficiently ingest, store, process, and analyze large volumes of data streams. This advanced data infrastructure integrates messaging, stream processing, and storage to enable real-time value extraction from your data. It continuously handles vast amounts of data generated by diverse sources, including sensors from IoT devices. Data streams are securely stored in a dedicated distributed streaming data storage cluster that can manage millions of streams. By subscribing to topics in HStreamDB, users can access and consume data streams in real-time at speeds comparable to Kafka. The system also allows for permanent storage of data streams, enabling users to replay and analyze them whenever needed. With a familiar SQL syntax, you can process these data streams based on event-time, similar to querying data in a traditional relational database. This functionality enables users to filter, transform, aggregate, and even join multiple streams seamlessly, enhancing the overall data analysis experience. Ultimately, the integration of these features ensures that organizations can leverage their data effectively and make timely decisions.
  • 38
    Apache PredictionIO Reviews
    Apache PredictionIO® is a robust open-source machine learning server designed for developers and data scientists to build predictive engines for diverse machine learning applications. It empowers users to swiftly create and launch an engine as a web service in a production environment using easily customizable templates. Upon deployment, it can handle dynamic queries in real-time, allowing for systematic evaluation and tuning of various engine models, while also enabling the integration of data from multiple sources for extensive predictive analytics. By streamlining the machine learning modeling process with structured methodologies and established evaluation metrics, it supports numerous data processing libraries, including Spark MLLib and OpenNLP. Users can also implement their own machine learning algorithms and integrate them effortlessly into the engine. Additionally, it simplifies the management of data infrastructure, catering to a wide range of analytics needs. Apache PredictionIO® can be installed as a complete machine learning stack, which includes components such as Apache Spark, MLlib, HBase, and Akka HTTP, providing a comprehensive solution for predictive modeling. This versatile platform effectively enhances the ability to leverage machine learning across various industries and applications.
  • 39
    Akira AI Reviews

    Akira AI

    Akira AI

    $15 per month
    Akira.ai offers organizations a suite of Agentic AI, which comprises tailored AI agents aimed at refining and automating intricate workflows across multiple sectors. These agents work alongside human teams to improve productivity, facilitate prompt decision-making, and handle monotonous tasks, including data analysis, HR operations, and incident management. The platform is designed to seamlessly integrate with current systems such as CRMs and ERPs, enabling a smooth shift to AI-driven processes without disruption. By implementing Akira’s AI agents, businesses can enhance their operational efficiency, accelerate decision-making, and foster innovation in industries such as finance, IT, and manufacturing. Ultimately, this collaboration between AI and human teams paves the way for significant advancements in productivity and operational excellence.
  • 40
    ZenML Reviews
    Simplify your MLOps pipelines. ZenML allows you to manage, deploy and scale any infrastructure. ZenML is open-source and free. Two simple commands will show you the magic. ZenML can be set up in minutes and you can use all your existing tools. ZenML interfaces ensure your tools work seamlessly together. Scale up your MLOps stack gradually by changing components when your training or deployment needs change. Keep up to date with the latest developments in the MLOps industry and integrate them easily. Define simple, clear ML workflows and save time by avoiding boilerplate code or infrastructure tooling. Write portable ML codes and switch from experiments to production in seconds. ZenML's plug and play integrations allow you to manage all your favorite MLOps software in one place. Prevent vendor lock-in by writing extensible, tooling-agnostic, and infrastructure-agnostic code.
  • 41
    Kedro Reviews
    Kedro serves as a robust framework for establishing clean data science practices. By integrating principles from software engineering, it enhances the efficiency of machine-learning initiatives. Within a Kedro project, you will find a structured approach to managing intricate data workflows and machine-learning pipelines. This allows you to minimize the time spent on cumbersome implementation tasks and concentrate on addressing innovative challenges. Kedro also standardizes the creation of data science code, fostering effective collaboration among team members in problem-solving endeavors. Transitioning smoothly from development to production becomes effortless with exploratory code that can evolve into reproducible, maintainable, and modular experiments. Additionally, Kedro features a set of lightweight data connectors designed to facilitate the saving and loading of data across various file formats and storage systems, making data management more versatile and user-friendly. Ultimately, this framework empowers data scientists to work more effectively and with greater confidence in their projects.
  • 42
    Tabular Reviews

    Tabular

    Tabular

    $100 per month
    Tabular is an innovative open table storage solution designed by the same team behind Apache Iceberg, allowing seamless integration with various computing engines and frameworks. By leveraging this technology, users can significantly reduce both query times and storage expenses, achieving savings of up to 50%. It centralizes the enforcement of role-based access control (RBAC) policies, ensuring data security is consistently maintained. The platform is compatible with multiple query engines and frameworks, such as Athena, BigQuery, Redshift, Snowflake, Databricks, Trino, Spark, and Python, offering extensive flexibility. With features like intelligent compaction and clustering, as well as other automated data services, Tabular further enhances efficiency by minimizing storage costs and speeding up query performance. It allows for unified data access at various levels, whether at the database or table. Additionally, managing RBAC controls is straightforward, ensuring that security measures are not only consistent but also easily auditable. Tabular excels in usability, providing robust ingestion capabilities and performance, all while maintaining effective RBAC management. Ultimately, it empowers users to select from a variety of top-tier compute engines, each tailored to their specific strengths, while also enabling precise privilege assignments at the database, table, or even column level. This combination of features makes Tabular a powerful tool for modern data management.
  • 43
    Apache Doris Reviews

    Apache Doris

    The Apache Software Foundation

    Free
    Apache Doris serves as a cutting-edge data warehouse tailored for real-time analytics, enabling exceptionally rapid analysis of data at scale. It features both push-based micro-batch and pull-based streaming data ingestion that occurs within a second, alongside a storage engine capable of real-time upserts, appends, and pre-aggregation. With its columnar storage architecture, MPP design, cost-based query optimization, and vectorized execution engine, it is optimized for handling high-concurrency and high-throughput queries efficiently. Moreover, it allows for federated querying across various data lakes, including Hive, Iceberg, and Hudi, as well as relational databases such as MySQL and PostgreSQL. Doris supports complex data types like Array, Map, and JSON, and includes a Variant data type that facilitates automatic inference for JSON structures, along with advanced text search capabilities through NGram bloomfilters and inverted indexes. Its distributed architecture ensures linear scalability and incorporates workload isolation and tiered storage to enhance resource management. Additionally, it accommodates both shared-nothing clusters and the separation of storage from compute resources, providing flexibility in deployment and management.
  • 44
    Hue Reviews
    Hue delivers an exceptional querying experience through its advanced autocomplete features and sophisticated query editor components. Users can seamlessly navigate tables and storage browsers, utilizing their existing knowledge of data catalogs. This functionality assists in locating the right data within extensive databases while also enabling self-documentation. Furthermore, the platform supports users in crafting SQL queries and provides rich previews for links, allowing for direct sharing in Slack from the editor. There is a variety of applications available, each tailored to specific querying needs, and data sources can be initially explored through the intuitive browsers. The editor excels particularly in SQL queries, equipped with intelligent autocomplete, risk alerts, and self-service troubleshooting capabilities. While dashboards are designed to visualize indexed data, they also possess the ability to query SQL databases effectively. Users can now search for specific cell values in tables, with results highlighted for easy identification. Additionally, Hue's SQL editing capabilities are considered among the finest globally, ensuring a streamlined and efficient experience for all users. This combination of features makes Hue a powerful tool for data exploration and management.
  • 45
    Yandex Data Proc Reviews

    Yandex Data Proc

    Yandex

    $0.19 per hour
    You determine the cluster size, node specifications, and a range of services, while Yandex Data Proc effortlessly sets up and configures Spark, Hadoop clusters, and additional components. Collaboration is enhanced through the use of Zeppelin notebooks and various web applications via a user interface proxy. You maintain complete control over your cluster with root access for every virtual machine. Moreover, you can install your own software and libraries on active clusters without needing to restart them. Yandex Data Proc employs instance groups to automatically adjust computing resources of compute subclusters in response to CPU usage metrics. Additionally, Data Proc facilitates the creation of managed Hive clusters, which helps minimize the risk of failures and data loss due to metadata issues. This service streamlines the process of constructing ETL pipelines and developing models, as well as managing other iterative operations. Furthermore, the Data Proc operator is natively integrated into Apache Airflow, allowing for seamless orchestration of data workflows. This means that users can leverage the full potential of their data processing capabilities with minimal overhead and maximum efficiency.
  • 46
    Tonic Ephemeral Reviews

    Tonic Ephemeral

    Tonic

    $199 per month
    Stop spending unnecessary time on the provisioning and upkeep of databases by automating the process. Instantly generate isolated test databases to accelerate the delivery of features. Empower your developers with the immediate access to essential data they require to keep projects moving swiftly. Seamlessly create pre-populated databases for testing within your CI/CD pipeline and automatically remove them once the testing phase concludes. With just a click, you can quickly and easily set up databases for testing, bug reproduction, demonstrations, and much more, all supported by integrated container orchestration. Utilize our innovative subsetter to condense petabytes of data down to gigabytes while maintaining referential integrity, and then take advantage of Tonic Ephemeral to create a database containing only the necessary data for development, thereby reducing cloud expenses and enhancing productivity. By combining our patented subsetter with Tonic Ephemeral, you can ensure access to all required data subsets for only the duration they are needed. This approach maximizes efficiency by providing your developers with easy access to specific datasets tailored for local development, enabling them to work more effectively. Ultimately, this leads to a more streamlined workflow and better project outcomes.
  • 47
    Spark NLP Reviews

    Spark NLP

    John Snow Labs

    Free
    Discover the transformative capabilities of large language models as they redefine Natural Language Processing (NLP) through Spark NLP, an open-source library that empowers users with scalable LLMs. The complete codebase is accessible under the Apache 2.0 license, featuring pre-trained models and comprehensive pipelines. As the sole NLP library designed specifically for Apache Spark, it stands out as the most widely adopted solution in enterprise settings. Spark ML encompasses a variety of machine learning applications that leverage two primary components: estimators and transformers. Estimators possess a method that ensures data is secured and trained for specific applications, while transformers typically result from the fitting process, enabling modifications to the target dataset. These essential components are intricately integrated within Spark NLP, facilitating seamless functionality. Pipelines serve as a powerful mechanism that unites multiple estimators and transformers into a cohesive workflow, enabling a series of interconnected transformations throughout the machine-learning process. This integration not only enhances the efficiency of NLP tasks but also simplifies the overall development experience.
  • 48
    StarRocks Reviews
    Regardless of whether your project involves a single table or numerous tables, StarRocks guarantees an impressive performance improvement of at least 300% when compared to other widely used solutions. With its comprehensive array of connectors, you can seamlessly ingest streaming data and capture information in real time, ensuring that you always have access to the latest insights. The query engine is tailored to suit your specific use cases, allowing for adaptable analytics without the need to relocate data or modify SQL queries. This provides an effortless way to scale your analytics capabilities as required. StarRocks not only facilitates a swift transition from data to actionable insights, but also stands out with its unmatched performance, offering a holistic OLAP solution that addresses the most prevalent data analytics requirements. Its advanced memory-and-disk-based caching framework is purpose-built to reduce I/O overhead associated with retrieving data from external storage, significantly enhancing query performance while maintaining efficiency. This unique combination of features ensures that users can maximize their data's potential without unnecessary delays.
  • 49
    Speedb Reviews
    Introducing Speedb, the cutting-edge key-value storage engine that is fully compatible with RocksDB, offering enhanced stability, efficiency, and performance improvements. By becoming a part of the Hive, Speedb’s open-source community, you can engage with others to refine and exchange insights and best practices regarding RocksDB. Speedb stands as a viable alternative for users of LevelDB and RocksDB who are looking to elevate their applications. If you are utilizing event streaming platforms such as Kafka, Flink, Spark, Splunk, or Elastic, incorporating Speedb can significantly boost their performance. The growing volume of metadata in contemporary data sets is leading to notable performance challenges for various applications, but with Speedb, you can maintain affordable costs while ensuring your applications run seamlessly, even during peak demand. When considering whether to upgrade or implement a new key-value store within your infrastructure, Speedb is well-equipped to meet the demands. By integrating Speedb's sophisticated key-value storage engine into your projects, you will swiftly notice enhancements in performance and efficiency, allowing you to focus on innovation rather than troubleshooting.
  • 50
    Apache Phoenix Reviews

    Apache Phoenix

    Apache Software Foundation

    Free
    Apache Phoenix provides low-latency OLTP and operational analytics on Hadoop by merging the advantages of traditional SQL with the flexibility of NoSQL. It utilizes HBase as its underlying storage, offering full ACID transaction support alongside late-bound, schema-on-read capabilities. Fully compatible with other Hadoop ecosystem tools such as Spark, Hive, Pig, Flume, and MapReduce, it establishes itself as a reliable data platform for OLTP and operational analytics through well-defined, industry-standard APIs. When a SQL query is executed, Apache Phoenix converts it into a series of HBase scans, managing these scans to deliver standard JDBC result sets seamlessly. The framework's direct interaction with the HBase API, along with the implementation of coprocessors and custom filters, enables performance metrics that can reach milliseconds for simple queries and seconds for larger datasets containing tens of millions of rows. This efficiency positions Apache Phoenix as a formidable choice for businesses looking to enhance their data processing capabilities in a Big Data environment.
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • Next