What Integrates with Apache Iceberg?
Find out what Apache Iceberg integrations exist in 2025. Learn what software and services currently integrate with Apache Iceberg, and sort them by reviews, cost, features, and more. Below is a list of products that Apache Iceberg currently integrates with:
-
1
Apache Hive
Apache Software Foundation
1 RatingApache Hive is a data warehouse solution that enables the efficient reading, writing, and management of substantial datasets stored across distributed systems using SQL. It allows users to apply structure to pre-existing data in storage. To facilitate user access, it comes equipped with a command line interface and a JDBC driver. As an open-source initiative, Apache Hive is maintained by dedicated volunteers at the Apache Software Foundation. Initially part of the Apache® Hadoop® ecosystem, it has since evolved into an independent top-level project. We invite you to explore the project further and share your knowledge to enhance its development. Users typically implement traditional SQL queries through the MapReduce Java API, which can complicate the execution of SQL applications on distributed data. However, Hive simplifies this process by offering a SQL abstraction that allows for the integration of SQL-like queries, known as HiveQL, into the underlying Java framework, eliminating the need to delve into the complexities of the low-level Java API. This makes working with large datasets more accessible and efficient for developers. -
2
Impala
Command Line Software
€17 per monthEffortlessly link your product to hotel data in just a few minutes by securely accessing and updating various hotel systems through a robust and well-documented JSON API. With the ability to connect your application to our Test Hotel almost instantly, you can start integrating with real hotels within days rather than weeks. Utilizing a single, easy-to-navigate universal REST API, Impala interfaces with numerous hotel systems, ensuring that you have a streamlined connection. Our platform is designed with bank-level security, complies fully with GDPR regulations, and is hosted across multiple geographic locations for enhanced reliability. Impala is poised to be the ultimate integration solution for property management systems, relieving you of the need to manage multiple connections. As we continuously expand our network of hotel systems, your business can reach an increasingly diverse array of hotels each month. Recognizing the importance of comprehensive data in modern hotel technology, Impala ensures seamless two-way data exchange, whether you need to access guest details, process a new transaction, or get updates on rate adjustments. With Impala, you can enjoy peace of mind knowing that all your hotel data needs are met efficiently and securely. -
3
Trino
Trino
FreeTrino is a remarkably fast query engine designed to operate at exceptional speeds. It serves as a high-performance, distributed SQL query engine tailored for big data analytics, enabling users to delve into their vast data environments. Constructed for optimal efficiency, Trino excels in low-latency analytics and is extensively utilized by some of the largest enterprises globally to perform queries on exabyte-scale data lakes and enormous data warehouses. It accommodates a variety of scenarios, including interactive ad-hoc analytics, extensive batch queries spanning several hours, and high-throughput applications that require rapid sub-second query responses. Trino adheres to ANSI SQL standards, making it compatible with popular business intelligence tools like R, Tableau, Power BI, and Superset. Moreover, it allows direct querying of data from various sources such as Hadoop, S3, Cassandra, and MySQL, eliminating the need for cumbersome, time-consuming, and error-prone data copying processes. This capability empowers users to access and analyze data from multiple systems seamlessly within a single query. Such versatility makes Trino a powerful asset in today's data-driven landscape. -
4
Tabular
Tabular
$100 per monthTabular is an innovative open table storage solution designed by the same team behind Apache Iceberg, allowing seamless integration with various computing engines and frameworks. By leveraging this technology, users can significantly reduce both query times and storage expenses, achieving savings of up to 50%. It centralizes the enforcement of role-based access control (RBAC) policies, ensuring data security is consistently maintained. The platform is compatible with multiple query engines and frameworks, such as Athena, BigQuery, Redshift, Snowflake, Databricks, Trino, Spark, and Python, offering extensive flexibility. With features like intelligent compaction and clustering, as well as other automated data services, Tabular further enhances efficiency by minimizing storage costs and speeding up query performance. It allows for unified data access at various levels, whether at the database or table. Additionally, managing RBAC controls is straightforward, ensuring that security measures are not only consistent but also easily auditable. Tabular excels in usability, providing robust ingestion capabilities and performance, all while maintaining effective RBAC management. Ultimately, it empowers users to select from a variety of top-tier compute engines, each tailored to their specific strengths, while also enabling precise privilege assignments at the database, table, or even column level. This combination of features makes Tabular a powerful tool for modern data management. -
5
Apache Impala
Apache
FreeImpala offers rapid response times and accommodates numerous concurrent users for business intelligence and analytical inquiries within the Hadoop ecosystem, supporting technologies such as Iceberg, various open data formats, and multiple cloud storage solutions. Additionally, it exhibits linear scalability, even when deployed in environments with multiple tenants. The platform seamlessly integrates with Hadoop's native security measures and employs Kerberos for user authentication, while the Ranger module provides a means to manage permissions, ensuring that only authorized users and applications can access specific data. You can leverage the same file formats, data types, metadata, and frameworks for security and resource management as those used in your Hadoop setup, avoiding unnecessary infrastructure and preventing data duplication or conversion. For users familiar with Apache Hive, Impala is compatible with the same metadata and ODBC driver, streamlining the transition. It also supports SQL, which eliminates the need to develop a new implementation from scratch. With Impala, a greater number of users can access and analyze a wider array of data through a unified repository, relying on metadata that tracks information right from the source to analysis. This unified approach enhances efficiency and optimizes data accessibility across various applications. -
6
PuppyGraph
PuppyGraph
FreePuppyGraph allows you to effortlessly query one or multiple data sources through a cohesive graph model. Traditional graph databases can be costly, require extensive setup time, and necessitate a specialized team to maintain. They often take hours to execute multi-hop queries and encounter difficulties when managing datasets larger than 100GB. Having a separate graph database can complicate your overall architecture due to fragile ETL processes, ultimately leading to increased total cost of ownership (TCO). With PuppyGraph, you can connect to any data source, regardless of its location, enabling cross-cloud and cross-region graph analytics without the need for intricate ETLs or data duplication. By directly linking to your data warehouses and lakes, PuppyGraph allows you to query your data as a graph without the burden of constructing and maintaining lengthy ETL pipelines typical of conventional graph database configurations. There's no longer a need to deal with delays in data access or unreliable ETL operations. Additionally, PuppyGraph resolves scalability challenges associated with graphs by decoupling computation from storage, allowing for more efficient data handling. This innovative approach not only enhances performance but also simplifies your data management strategy. -
7
StarRocks
StarRocks
FreeRegardless of whether your project involves a single table or numerous tables, StarRocks guarantees an impressive performance improvement of at least 300% when compared to other widely used solutions. With its comprehensive array of connectors, you can seamlessly ingest streaming data and capture information in real time, ensuring that you always have access to the latest insights. The query engine is tailored to suit your specific use cases, allowing for adaptable analytics without the need to relocate data or modify SQL queries. This provides an effortless way to scale your analytics capabilities as required. StarRocks not only facilitates a swift transition from data to actionable insights, but also stands out with its unmatched performance, offering a holistic OLAP solution that addresses the most prevalent data analytics requirements. Its advanced memory-and-disk-based caching framework is purpose-built to reduce I/O overhead associated with retrieving data from external storage, significantly enhancing query performance while maintaining efficiency. This unique combination of features ensures that users can maximize their data's potential without unnecessary delays. -
8
Stackable
Stackable
FreeThe Stackable data platform was crafted with a focus on flexibility and openness. It offers a carefully selected range of top-notch open source data applications, including Apache Kafka, Apache Druid, Trino, and Apache Spark. Unlike many competitors that either promote their proprietary solutions or enhance vendor dependence, Stackable embraces a more innovative strategy. All data applications are designed to integrate effortlessly and can be added or removed with remarkable speed. Built on Kubernetes, it is capable of operating in any environment, whether on-premises or in the cloud. To initiate your first Stackable data platform, all you require is stackablectl along with a Kubernetes cluster. In just a few minutes, you will be poised to begin working with your data. You can set up your one-line startup command right here. Much like kubectl, stackablectl is tailored for seamless interaction with the Stackable Data Platform. Utilize this command line tool for deploying and managing stackable data applications on Kubernetes. With stackablectl, you have the ability to create, delete, and update components efficiently, ensuring a smooth operational experience for your data management needs. The versatility and ease of use make it an excellent choice for developers and data engineers alike. -
9
Amazon Data Firehose
Amazon
$0.075 per monthEffortlessly capture, modify, and transfer streaming data in real time. You can create a delivery stream, choose your desired destination, and begin streaming data with minimal effort. The system automatically provisions and scales necessary compute, memory, and network resources without the need for continuous management. You can convert raw streaming data into various formats such as Apache Parquet and dynamically partition it without the hassle of developing your processing pipelines. Amazon Data Firehose is the most straightforward method to obtain, transform, and dispatch data streams in mere seconds to data lakes, data warehouses, and analytics platforms. To utilize Amazon Data Firehose, simply establish a stream by specifying the source, destination, and any transformations needed. The service continuously processes your data stream, automatically adjusts its scale according to the data volume, and ensures delivery within seconds. You can either choose a source for your data stream or utilize the Firehose Direct PUT API to write data directly. This streamlined approach allows for greater efficiency and flexibility in handling data streams. -
10
Streamkap
Streamkap
$600 per monthStreamkap is a modern streaming ETL platform built on top of Apache Kafka and Flink, designed to replace batch ETL with streaming in minutes. It enables data movement with sub-second latency using change data capture for minimal impact on source databases and real-time updates. The platform offers dozens of pre-built, no-code source connectors, automated schema drift handling, updates, data normalization, and high-performance CDC for efficient and low-impact data movement. Streaming transformations power faster, cheaper, and richer data pipelines, supporting Python and SQL transformations for common use cases like hashing, masking, aggregations, joins, and unnesting JSON. Streamkap allows users to connect data sources and move data to target destinations with an automated, reliable, and scalable data movement platform. It supports a broad range of event and database sources. -
11
Onehouse
Onehouse
Introducing a unique cloud data lakehouse that is entirely managed and capable of ingesting data from all your sources within minutes, while seamlessly accommodating every query engine at scale, all at a significantly reduced cost. This platform enables ingestion from both databases and event streams at terabyte scale in near real-time, offering the ease of fully managed pipelines. Furthermore, you can execute queries using any engine, catering to diverse needs such as business intelligence, real-time analytics, and AI/ML applications. By adopting this solution, you can reduce your expenses by over 50% compared to traditional cloud data warehouses and ETL tools, thanks to straightforward usage-based pricing. Deployment is swift, taking just minutes, without the burden of engineering overhead, thanks to a fully managed and highly optimized cloud service. Consolidate your data into a single source of truth, eliminating the necessity of duplicating data across various warehouses and lakes. Select the appropriate table format for each task, benefitting from seamless interoperability between Apache Hudi, Apache Iceberg, and Delta Lake. Additionally, quickly set up managed pipelines for change data capture (CDC) and streaming ingestion, ensuring that your data architecture is both agile and efficient. This innovative approach not only streamlines your data processes but also enhances decision-making capabilities across your organization. -
12
Presto
Presto Foundation
Presto serves as an open-source distributed SQL query engine designed for executing interactive analytic queries across data sources that can range in size from gigabytes to petabytes. It addresses the challenges faced by data engineers who often navigate multiple query languages and interfaces tied to isolated databases and storage systems. Presto stands out as a quick and dependable solution by offering a unified ANSI SQL interface for comprehensive data analytics and your open lakehouse. Relying on different engines for various workloads often leads to the necessity of re-platforming in the future. However, with Presto, you benefit from a singular, familiar ANSI SQL language and one engine for all your analytic needs, negating the need to transition to another lakehouse engine. Additionally, it efficiently accommodates both interactive and batch workloads, handling small to large datasets and scaling from just a few users to thousands. By providing a straightforward ANSI SQL interface for all your data residing in varied siloed systems, Presto effectively integrates your entire data ecosystem, fostering seamless collaboration and accessibility across platforms. Ultimately, this integration empowers organizations to make more informed decisions based on a comprehensive view of their data landscape. -
13
Apache Spark
Apache Software Foundation
Apache Spark™ serves as a comprehensive analytics platform designed for large-scale data processing. It delivers exceptional performance for both batch and streaming data by employing an advanced Directed Acyclic Graph (DAG) scheduler, a sophisticated query optimizer, and a robust execution engine. With over 80 high-level operators available, Spark simplifies the development of parallel applications. Additionally, it supports interactive use through various shells including Scala, Python, R, and SQL. Spark supports a rich ecosystem of libraries such as SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming, allowing for seamless integration within a single application. It is compatible with various environments, including Hadoop, Apache Mesos, Kubernetes, and standalone setups, as well as cloud deployments. Furthermore, Spark can connect to a multitude of data sources, enabling access to data stored in systems like HDFS, Alluxio, Apache Cassandra, Apache HBase, and Apache Hive, among many others. This versatility makes Spark an invaluable tool for organizations looking to harness the power of large-scale data analytics. -
14
SQL
SQL
SQL is a specialized programming language designed specifically for the purpose of retrieving, organizing, and modifying data within relational databases and the systems that manage them. Its use is essential for effective database management and interaction. -
15
Salesforce Data Cloud
Salesforce
Salesforce Data Cloud serves as a real-time data platform aimed at consolidating and overseeing customer information from diverse sources within a business, facilitating a unified and thorough perspective of each client. This platform empowers organizations to gather, synchronize, and evaluate data in real time, thereby creating a complete 360-degree customer profile that can be utilized across various Salesforce applications, including Marketing Cloud, Sales Cloud, and Service Cloud. By merging data from both online and offline avenues, such as CRM data, transactional records, and external data sources, it fosters quicker and more personalized interactions with customers. Additionally, Salesforce Data Cloud is equipped with sophisticated AI tools and analytical features, enabling businesses to derive deeper insights into customer behavior and forecast future requirements. By centralizing and refining data for practical application, it enhances customer experiences, allows for targeted marketing efforts, and promotes effective, data-driven decisions throughout different departments. Ultimately, Salesforce Data Cloud not only streamlines data management but also plays a crucial role in helping organizations stay competitive in a rapidly evolving marketplace. -
16
Specifically designed to deploy AI seamlessly across all types of data, our solution maximizes the potential of your unstructured information, enabling you to access, prepare, train, optimize, and implement AI without constraints. We have integrated our top-tier file and object storage options, such as PowerScale, ECS, and ObjectScale, with our PowerEdge servers and a contemporary, open data lakehouse framework. This combination empowers you to harness AI for your unstructured data, whether on-site, at the edge, or in any cloud environment, ensuring unparalleled performance and limitless scalability. Additionally, you can leverage a dedicated team of skilled data scientists and industry professionals who can assist in deploying AI applications that yield significant benefits for your organization. Moreover, safeguard your systems against cyber threats with robust software and hardware security measures alongside immediate threat detection capabilities. Utilize a unified data access point to train and refine your AI models, achieving the highest efficiency wherever your data resides, whether that be on-premises, at the edge, or in the cloud. This comprehensive approach not only enhances your AI capabilities but also fortifies your organization's resilience against evolving security challenges.
-
17
Apache Flink
Apache Software Foundation
Apache Flink serves as a powerful framework and distributed processing engine tailored for executing stateful computations on both unbounded and bounded data streams. It has been engineered to operate seamlessly across various cluster environments, delivering computations with impressive in-memory speed and scalability. Data of all types is generated as a continuous stream of events, encompassing credit card transactions, sensor data, machine logs, and user actions on websites or mobile apps. The capabilities of Apache Flink shine particularly when handling both unbounded and bounded data sets. Its precise management of time and state allows Flink’s runtime to support a wide range of applications operating on unbounded streams. For bounded streams, Flink employs specialized algorithms and data structures optimized for fixed-size data sets, ensuring remarkable performance. Furthermore, Flink is adept at integrating with all previously mentioned resource managers, enhancing its versatility in various computing environments. This makes Flink a valuable tool for developers seeking efficient and reliable stream processing solutions. -
18
Daft
Daft
Daft is an advanced framework designed for ETL, analytics, and machine learning/artificial intelligence at scale, providing an intuitive Python dataframe API that surpasses Spark in both performance and user-friendliness. It integrates seamlessly with your ML/AI infrastructure through efficient zero-copy connections to essential Python libraries like Pytorch and Ray, and it enables the allocation of GPUs for model execution. Operating on a lightweight multithreaded backend, Daft starts by running locally, but when the capabilities of your machine are exceeded, it effortlessly transitions to an out-of-core setup on a distributed cluster. Additionally, Daft supports User-Defined Functions (UDFs) in columns, enabling the execution of intricate expressions and operations on Python objects with the necessary flexibility for advanced ML/AI tasks. Its ability to scale and adapt makes it a versatile choice for data processing and analysis in various environments. -
19
Dremio
Dremio
Dremio provides lightning-fast queries as well as a self-service semantic layer directly to your data lake storage. No data moving to proprietary data warehouses, and no cubes, aggregation tables, or extracts. Data architects have flexibility and control, while data consumers have self-service. Apache Arrow and Dremio technologies such as Data Reflections, Columnar Cloud Cache(C3), and Predictive Pipelining combine to make it easy to query your data lake storage. An abstraction layer allows IT to apply security and business meaning while allowing analysts and data scientists access data to explore it and create new virtual datasets. Dremio's semantic layers is an integrated searchable catalog that indexes all your metadata so business users can make sense of your data. The semantic layer is made up of virtual datasets and spaces, which are all searchable and indexed.
- Previous
- You're on page 1
- Next