RaimaDB
RaimaDB, an embedded time series database that can be used for Edge and IoT devices, can run in-memory. It is a lightweight, secure, and extremely powerful RDBMS. It has been field tested by more than 20 000 developers around the world and has been deployed in excess of 25 000 000 times.
RaimaDB is a high-performance, cross-platform embedded database optimized for mission-critical applications in industries such as IoT and edge computing. Its lightweight design makes it ideal for resource-constrained environments, supporting both in-memory and persistent storage options. RaimaDB offers flexible data modeling, including traditional relational models and direct relationships through network model sets. With ACID-compliant transactions and advanced indexing methods like B+Tree, Hash Table, R-Tree, and AVL-Tree, it ensures data reliability and efficiency. Built for real-time processing, it incorporates multi-version concurrency control (MVCC) and snapshot isolation, making it a robust solution for applications demanding speed and reliability.
Learn more
Google Cloud Platform
Google Cloud is an online service that lets you create everything from simple websites to complex apps for businesses of any size.
Customers who are new to the system will receive $300 in credits for testing, deploying, and running workloads. Customers can use up to 25+ products free of charge.
Use Google's core data analytics and machine learning. All enterprises can use it. It is secure and fully featured. Use big data to build better products and find answers faster. You can grow from prototypes to production and even to planet-scale without worrying about reliability, capacity or performance. Virtual machines with proven performance/price advantages, to a fully-managed app development platform. High performance, scalable, resilient object storage and databases. Google's private fibre network offers the latest software-defined networking solutions. Fully managed data warehousing and data exploration, Hadoop/Spark and messaging.
Learn more
Tencent Cloud Elastic MapReduce
EMR allows you to adjust the size of your managed Hadoop clusters either manually or automatically, adapting to your business needs and monitoring indicators. Its architecture separates storage from computation, which gives you the flexibility to shut down a cluster to optimize resource utilization effectively. Additionally, EMR features hot failover capabilities for CBS-based nodes, utilizing a primary/secondary disaster recovery system that enables the secondary node to activate within seconds following a primary node failure, thereby ensuring continuous availability of big data services. The metadata management for components like Hive is also designed to support remote disaster recovery options. With computation-storage separation, EMR guarantees high data persistence for COS data storage, which is crucial for maintaining data integrity. Furthermore, EMR includes a robust monitoring system that quickly alerts you to cluster anomalies, promoting stable operations. Virtual Private Clouds (VPCs) offer an effective means of network isolation, enhancing your ability to plan network policies for managed Hadoop clusters. This comprehensive approach not only facilitates efficient resource management but also establishes a reliable framework for disaster recovery and data security.
Learn more
Apache Spark
Apache Spark™ serves as a comprehensive analytics platform designed for large-scale data processing. It delivers exceptional performance for both batch and streaming data by employing an advanced Directed Acyclic Graph (DAG) scheduler, a sophisticated query optimizer, and a robust execution engine. With over 80 high-level operators available, Spark simplifies the development of parallel applications. Additionally, it supports interactive use through various shells including Scala, Python, R, and SQL. Spark supports a rich ecosystem of libraries such as SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming, allowing for seamless integration within a single application. It is compatible with various environments, including Hadoop, Apache Mesos, Kubernetes, and standalone setups, as well as cloud deployments. Furthermore, Spark can connect to a multitude of data sources, enabling access to data stored in systems like HDFS, Alluxio, Apache Cassandra, Apache HBase, and Apache Hive, among many others. This versatility makes Spark an invaluable tool for organizations looking to harness the power of large-scale data analytics.
Learn more