Best Apache DataFusion Alternatives in 2026
Find the top alternatives to Apache DataFusion currently available. Compare ratings, reviews, pricing, and features of Apache DataFusion alternatives in 2026. Slashdot lists the best Apache DataFusion alternatives on the market that offer competing products that are similar to Apache DataFusion. Sort through Apache DataFusion alternatives below to make the best choice for your needs
-
1
OpenObserve
OpenObserve
$0.30 per GBOpenObserve is a robust open-source observability platform designed for managing logs, metrics, and traces, focusing on exceptional performance, scalability, and significantly reduced costs. It enables observability at a petabyte scale by incorporating features like columnar storage data compression and the flexibility of “bring your own bucket” storage options, including local disks and cloud services such as S3, GCS, and Azure Blob. Developed in Rust, it utilizes the DataFusion query engine for direct querying of Parquet files, and it boasts a stateless, horizontally scalable framework that employs caching strategies for both results and disk to ensure rapid performance even during peak loads. By adhering to open standards, including compatibility with OpenTelemetry and vendor-neutral APIs, OpenObserve seamlessly integrates into pre-existing monitoring and logging ecosystems. Its essential components encompass logs, metrics, traces, frontend monitoring, pipelines, alerts, and comprehensive dashboards for visualizations. Ultimately, OpenObserve empowers organizations to achieve efficient and cost-effective observability solutions in their operations. -
2
StarTree
StarTree
FreeStarTree Cloud is a fully-managed real-time analytics platform designed for OLAP at massive speed and scale for user-facing applications. Powered by Apache Pinot, StarTree Cloud provides enterprise-grade reliability and advanced capabilities such as tiered storage, scalable upserts, plus additional indexes and connectors. It integrates seamlessly with transactional databases and event streaming platforms, ingesting data at millions of events per second and indexing it for lightning-fast query responses. StarTree Cloud is available on your favorite public cloud or for private SaaS deployment. StarTree Cloud includes StarTree Data Manager, which allows you to ingest data from both real-time sources such as Amazon Kinesis, Apache Kafka, Apache Pulsar, or Redpanda, as well as batch data sources such as data warehouses like Snowflake, Delta Lake or Google BigQuery, or object stores like Amazon S3, Apache Flink, Apache Hadoop, or Apache Spark. StarTree ThirdEye is an add-on anomaly detection system running on top of StarTree Cloud that observes your business-critical metrics, alerting you and allowing you to perform root-cause analysis — all in real-time. -
3
PySpark
PySpark
PySpark serves as the Python interface for Apache Spark, enabling the development of Spark applications through Python APIs and offering an interactive shell for data analysis in a distributed setting. In addition to facilitating Python-based development, PySpark encompasses a wide range of Spark functionalities, including Spark SQL, DataFrame support, Streaming capabilities, MLlib for machine learning, and the core features of Spark itself. Spark SQL, a dedicated module within Spark, specializes in structured data processing and introduces a programming abstraction known as DataFrame, functioning also as a distributed SQL query engine. Leveraging the capabilities of Spark, the streaming component allows for the execution of advanced interactive and analytical applications that can process both real-time and historical data, while maintaining the inherent advantages of Spark, such as user-friendliness and robust fault tolerance. Furthermore, PySpark's integration with these features empowers users to handle complex data operations efficiently across various datasets. -
4
Polars
Polars
Polars offers a comprehensive Python API that reflects common data wrangling practices, providing a wide array of functionalities for manipulating DataFrames through an expression language that enables the creation of both efficient and clear code. Developed in Rust, Polars makes deliberate choices to ensure a robust DataFrame API that caters to the Rust ecosystem's needs. It serves not only as a library for DataFrames but also as a powerful backend query engine for your data models, allowing for versatility in data handling and analysis. This flexibility makes it a valuable tool for data scientists and engineers alike. -
5
GeoSpock
GeoSpock
GeoSpock revolutionizes data integration for a connected universe through its innovative GeoSpock DB, a cutting-edge space-time analytics database. This cloud-native solution is specifically designed for effective querying of real-world scenarios, enabling the combination of diverse Internet of Things (IoT) data sources to fully harness their potential, while also streamlining complexity and reducing expenses. With GeoSpock DB, users benefit from efficient data storage, seamless fusion, and quick programmatic access, allowing for the execution of ANSI SQL queries and the ability to link with analytics platforms through JDBC/ODBC connectors. Analysts can easily conduct evaluations and disseminate insights using familiar toolsets, with compatibility for popular business intelligence tools like Tableau™, Amazon QuickSight™, and Microsoft Power BI™, as well as support for data science and machine learning frameworks such as Python Notebooks and Apache Spark. Furthermore, the database can be effortlessly integrated with internal systems and web services, ensuring compatibility with open-source and visualization libraries, including Kepler and Cesium.js, thus expanding its versatility in various applications. This comprehensive approach empowers organizations to make data-driven decisions efficiently and effectively. -
6
IBM Cloud SQL Query
IBM
$5.00/Terabyte-Month Experience serverless and interactive data querying with IBM Cloud Object Storage, enabling you to analyze your data directly at its source without the need for ETL processes, databases, or infrastructure management. IBM Cloud SQL Query leverages Apache Spark, a high-performance, open-source data processing engine designed for quick and flexible analysis, allowing SQL queries without requiring ETL or schema definitions. You can easily perform data analysis on your IBM Cloud Object Storage via our intuitive query editor and REST API. With a pay-per-query pricing model, you only incur costs for the data that is scanned, providing a cost-effective solution that allows for unlimited queries. To enhance both savings and performance, consider compressing or partitioning your data. Furthermore, IBM Cloud SQL Query ensures high availability by executing queries across compute resources located in various facilities. Supporting multiple data formats, including CSV, JSON, and Parquet, it also accommodates standard ANSI SQL for your querying needs, making it a versatile tool for data analysis. This capability empowers organizations to make data-driven decisions more efficiently than ever before. -
7
BigLake
Google
$5 per TBBigLake serves as a storage engine that merges the functionalities of data warehouses and lakes, allowing BigQuery and open-source frameworks like Spark to efficiently access data while enforcing detailed access controls. It enhances query performance across various multi-cloud storage systems and supports open formats, including Apache Iceberg. Users can maintain a single version of data, ensuring consistent features across both data warehouses and lakes. With its capacity for fine-grained access management and comprehensive governance over distributed data, BigLake seamlessly integrates with open-source analytics tools and embraces open data formats. This solution empowers users to conduct analytics on distributed data, regardless of its storage location or method, while selecting the most suitable analytics tools, whether they be open-source or cloud-native, all based on a singular data copy. Additionally, it offers fine-grained access control for open-source engines such as Apache Spark, Presto, and Trino, along with formats like Parquet. As a result, users can execute high-performing queries on data lakes driven by BigQuery. Furthermore, BigLake collaborates with Dataplex, facilitating scalable management and logical organization of data assets. This integration not only enhances operational efficiency but also simplifies the complexities of data governance in large-scale environments. -
8
Apache Spark
Apache Software Foundation
Apache Spark™ serves as a comprehensive analytics platform designed for large-scale data processing. It delivers exceptional performance for both batch and streaming data by employing an advanced Directed Acyclic Graph (DAG) scheduler, a sophisticated query optimizer, and a robust execution engine. With over 80 high-level operators available, Spark simplifies the development of parallel applications. Additionally, it supports interactive use through various shells including Scala, Python, R, and SQL. Spark supports a rich ecosystem of libraries such as SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming, allowing for seamless integration within a single application. It is compatible with various environments, including Hadoop, Apache Mesos, Kubernetes, and standalone setups, as well as cloud deployments. Furthermore, Spark can connect to a multitude of data sources, enabling access to data stored in systems like HDFS, Alluxio, Apache Cassandra, Apache HBase, and Apache Hive, among many others. This versatility makes Spark an invaluable tool for organizations looking to harness the power of large-scale data analytics. -
9
Tabular
Tabular
$100 per monthTabular is an innovative open table storage solution designed by the same team behind Apache Iceberg, allowing seamless integration with various computing engines and frameworks. By leveraging this technology, users can significantly reduce both query times and storage expenses, achieving savings of up to 50%. It centralizes the enforcement of role-based access control (RBAC) policies, ensuring data security is consistently maintained. The platform is compatible with multiple query engines and frameworks, such as Athena, BigQuery, Redshift, Snowflake, Databricks, Trino, Spark, and Python, offering extensive flexibility. With features like intelligent compaction and clustering, as well as other automated data services, Tabular further enhances efficiency by minimizing storage costs and speeding up query performance. It allows for unified data access at various levels, whether at the database or table. Additionally, managing RBAC controls is straightforward, ensuring that security measures are not only consistent but also easily auditable. Tabular excels in usability, providing robust ingestion capabilities and performance, all while maintaining effective RBAC management. Ultimately, it empowers users to select from a variety of top-tier compute engines, each tailored to their specific strengths, while also enabling precise privilege assignments at the database, table, or even column level. This combination of features makes Tabular a powerful tool for modern data management. -
10
SDF
SDF
SDF serves as a robust platform for developers focused on data, improving SQL understanding across various organizations and empowering data teams to maximize their data's capabilities. It features a transformative layer that simplifies the processes of writing and managing queries, along with an analytical database engine that enables local execution and an accelerator that enhances transformation tasks. Additionally, SDF includes proactive measures for quality and governance, such as comprehensive reports, contracts, and impact analysis tools, to maintain data integrity and ensure compliance with regulations. By encapsulating business logic in code, SDF aids in the classification and management of different data types, thereby improving the clarity and sustainability of data models. Furthermore, it integrates effortlessly into pre-existing data workflows, accommodating multiple SQL dialects and cloud environments, and is built to scale alongside the evolving demands of data teams. The platform's open-core architecture, constructed on Apache DataFusion, not only promotes customization and extensibility but also encourages a collaborative environment for data development, making it an invaluable resource for organizations aiming to enhance their data strategies. Consequently, SDF plays a pivotal role in fostering innovation and efficiency within data management processes. -
11
Apache Geode
Apache
Develop high-speed, data-centric applications that can dynamically adapt to performance needs regardless of scale. Leverage the distinctive technology of Apache Geode, which integrates sophisticated methods for data replication, partitioning, and distributed processing. With a database-like consistency model, Apache Geode guarantees dependable transaction handling and employs a shared-nothing architecture that supports remarkably low latency, even under high concurrency. The platform allows for seamless data partitioning (sharding) and replication across nodes, enabling performance to grow in accordance with demand. Reliability is bolstered by maintaining redundant in-memory copies along with disk-based persistence. Additionally, it features rapid write-ahead logging (WAL) persistence, optimized for quick parallel recovery of individual nodes or the entire cluster, ensuring robust performance even during failures. This combination of features not only enhances efficiency but also significantly improves overall system resilience. -
12
Google Cloud Data Fusion
Google
Open core technology facilitates the integration of hybrid and multi-cloud environments. Built on the open-source initiative CDAP, Data Fusion guarantees portability of data pipelines for its users. The extensive compatibility of CDAP with both on-premises and public cloud services enables Cloud Data Fusion users to eliminate data silos and access previously unreachable insights. Additionally, its seamless integration with Google’s top-tier big data tools enhances the user experience. By leveraging Google Cloud, Data Fusion not only streamlines data security but also ensures that data is readily available for thorough analysis. Whether you are constructing a data lake utilizing Cloud Storage and Dataproc, transferring data into BigQuery for robust data warehousing, or transforming data for placement into a relational database like Cloud Spanner, the integration capabilities of Cloud Data Fusion promote swift and efficient development while allowing for rapid iteration. This comprehensive approach ultimately empowers businesses to derive greater value from their data assets. -
13
Apache Druid
Druid
Apache Druid is a distributed data storage solution that is open source. Its fundamental architecture merges concepts from data warehouses, time series databases, and search technologies to deliver a high-performance analytics database capable of handling a diverse array of applications. By integrating the essential features from these three types of systems, Druid optimizes its ingestion process, storage method, querying capabilities, and overall structure. Each column is stored and compressed separately, allowing the system to access only the relevant columns for a specific query, which enhances speed for scans, rankings, and groupings. Additionally, Druid constructs inverted indexes for string data to facilitate rapid searching and filtering. It also includes pre-built connectors for various platforms such as Apache Kafka, HDFS, and AWS S3, as well as stream processors and others. The system adeptly partitions data over time, making queries based on time significantly quicker than those in conventional databases. Users can easily scale resources by simply adding or removing servers, and Druid will manage the rebalancing automatically. Furthermore, its fault-tolerant design ensures resilience by effectively navigating around any server malfunctions that may occur. This combination of features makes Druid a robust choice for organizations seeking efficient and reliable real-time data analytics solutions. -
14
Apache Impala
Apache
FreeImpala offers rapid response times and accommodates numerous concurrent users for business intelligence and analytical inquiries within the Hadoop ecosystem, supporting technologies such as Iceberg, various open data formats, and multiple cloud storage solutions. Additionally, it exhibits linear scalability, even when deployed in environments with multiple tenants. The platform seamlessly integrates with Hadoop's native security measures and employs Kerberos for user authentication, while the Ranger module provides a means to manage permissions, ensuring that only authorized users and applications can access specific data. You can leverage the same file formats, data types, metadata, and frameworks for security and resource management as those used in your Hadoop setup, avoiding unnecessary infrastructure and preventing data duplication or conversion. For users familiar with Apache Hive, Impala is compatible with the same metadata and ODBC driver, streamlining the transition. It also supports SQL, which eliminates the need to develop a new implementation from scratch. With Impala, a greater number of users can access and analyze a wider array of data through a unified repository, relying on metadata that tracks information right from the source to analysis. This unified approach enhances efficiency and optimizes data accessibility across various applications. -
15
IBM Db2 Event Store is a cloud-native database system specifically engineered to manage vast quantities of structured data formatted in Apache Parquet. Its design is focused on optimizing event-driven data processing and analysis, enabling the system to capture, evaluate, and retain over 250 billion events daily. This high-performance data repository is both adaptable and scalable, allowing it to respond swiftly to evolving business demands. Utilizing the Db2 Event Store service, users can establish these data repositories within their Cloud Pak for Data clusters, facilitating effective data governance and enabling comprehensive analysis. The system is capable of rapidly ingesting substantial volumes of streaming data, processing up to one million inserts per second per node, which is essential for real-time analytics that incorporate machine learning capabilities. Furthermore, it allows for the real-time analysis of data from various medical devices, ultimately leading to improved health outcomes for patients, while simultaneously offering cost-efficiency in data storage management. Such features make IBM Db2 Event Store a powerful tool for organizations looking to leverage data-driven insights effectively.
-
16
SelectDB
SelectDB
$0.22 per hourSelectDB is an innovative data warehouse built on Apache Doris, designed for swift query analysis on extensive real-time datasets. Transitioning from Clickhouse to Apache Doris facilitates the separation of the data lake and promotes an upgrade to a more efficient lake warehouse structure. This high-speed OLAP system handles nearly a billion query requests daily, catering to various data service needs across multiple scenarios. To address issues such as storage redundancy, resource contention, and the complexities of data governance and querying, the original lake warehouse architecture was restructured with Apache Doris. By leveraging Doris's capabilities for materialized view rewriting and automated services, it achieves both high-performance data querying and adaptable data governance strategies. The system allows for real-time data writing within seconds and enables the synchronization of streaming data from databases. With a storage engine that supports immediate updates and enhancements, it also facilitates real-time pre-polymerization of data for improved processing efficiency. This integration marks a significant advancement in the management and utilization of large-scale real-time data. -
17
HyperSQL DataBase
The hsql Development Group
HSQLDB, or HyperSQL DataBase, stands out as a premier SQL relational database system developed in Java. It boasts a compact, efficient multithreaded transactional engine that accommodates both in-memory and disk-based tables, functioning effectively in embedded and server configurations. Users can take advantage of a robust command-line SQL interface along with straightforward GUI query tools. HSQLDB is distinguished by its comprehensive support for a vast array of SQL Standard features, including the core language components from SQL:2016 and an impressive collection of optional features from the same standard. It provides full support for Advanced ANSI-92 SQL, with only two notable exceptions. Additionally, HSQLDB includes numerous enhancements beyond the Standard, featuring compatibility modes and functionalities that align with other widely used database systems. Its versatility and extensive feature set make it a highly adaptable choice for developers and organizations alike. -
18
VeloDB
VeloDB
VeloDB, which utilizes Apache Doris, represents a cutting-edge data warehouse designed for rapid analytics on large-scale real-time data. It features both push-based micro-batch and pull-based streaming data ingestion that occurs in mere seconds, alongside a storage engine capable of real-time upserts, appends, and pre-aggregations. The platform delivers exceptional performance for real-time data serving and allows for dynamic interactive ad-hoc queries. VeloDB accommodates not only structured data but also semi-structured formats, supporting both real-time analytics and batch processing capabilities. Moreover, it functions as a federated query engine, enabling seamless access to external data lakes and databases in addition to internal data. The system is designed for distribution, ensuring linear scalability. Users can deploy it on-premises or as a cloud service, allowing for adaptable resource allocation based on workload demands, whether through separation or integration of storage and compute resources. Leveraging the strengths of open-source Apache Doris, VeloDB supports the MySQL protocol and various functions, allowing for straightforward integration with a wide range of data tools, ensuring flexibility and compatibility across different environments. -
19
Onehouse
Onehouse
Introducing a unique cloud data lakehouse that is entirely managed and capable of ingesting data from all your sources within minutes, while seamlessly accommodating every query engine at scale, all at a significantly reduced cost. This platform enables ingestion from both databases and event streams at terabyte scale in near real-time, offering the ease of fully managed pipelines. Furthermore, you can execute queries using any engine, catering to diverse needs such as business intelligence, real-time analytics, and AI/ML applications. By adopting this solution, you can reduce your expenses by over 50% compared to traditional cloud data warehouses and ETL tools, thanks to straightforward usage-based pricing. Deployment is swift, taking just minutes, without the burden of engineering overhead, thanks to a fully managed and highly optimized cloud service. Consolidate your data into a single source of truth, eliminating the necessity of duplicating data across various warehouses and lakes. Select the appropriate table format for each task, benefitting from seamless interoperability between Apache Hudi, Apache Iceberg, and Delta Lake. Additionally, quickly set up managed pipelines for change data capture (CDC) and streaming ingestion, ensuring that your data architecture is both agile and efficient. This innovative approach not only streamlines your data processes but also enhances decision-making capabilities across your organization. -
20
AnySQL Maestro
SQL Maestro Group
$79 one-time paymentAnySQL Maestro stands out as a top-tier, versatile administration tool designed for managing, controlling, and developing databases. The SQL Maestro Group presents a comprehensive suite of database management and web development solutions tailored for the leading database servers, ensuring exceptional performance, scalability, and reliability necessary for modern database applications. It offers support for a wide range of database engines, including SQL Server, MySQL, and Access, featuring capabilities for database design, data management, and various operations like editing, grouping, sorting, and filtering. The user-friendly SQL Editor enhances productivity with its code folding and multi-threading functionalities. Additionally, it includes a visual query builder and facilitates data import/export across numerous popular formats. A robust BLOB viewer/editor is also included, further enriching the user experience. Furthermore, the application equips users with an extensive array of tools to edit and execute SQL scripts, create visual diagrams for numerical data, build OLAP cubes, among other features, all while maintaining a user interface that is as intuitive as browsing through Windows Explorer. This makes AnySQL Maestro not only powerful but also accessible to users of all levels. -
21
EntelliFusion
Teksouth
EntelliFusion by Teksouth is a fully managed, end to end solution. EntelliFusion's architecture is a one-stop solution for outfitting a company's data infrastructure. Instead of trying to put together multiple platforms for data prep, data warehouse and governance, and then deploying a lot of IT resources to make it all work, EntelliFusion's architecture offers a single platform. EntelliFusion unites data silos into a single platform that allows for cross-functional KPI's. This creates powerful insights and holistic solutions. EntelliFusion's "military born" technology has been able to withstand the rigorous demands of the USA's top echelon in military operations. It was scaled up across the DOD over twenty years. EntelliFusion is built using the most recent Microsoft technologies and frameworks, which allows it to continue being improved and innovated. EntelliFusion is data-agnostic and infinitely scalable. It guarantees accuracy and performance to encourage end-user tool adoption. -
22
Amazon Data Firehose
Amazon
$0.075 per monthEffortlessly capture, modify, and transfer streaming data in real time. You can create a delivery stream, choose your desired destination, and begin streaming data with minimal effort. The system automatically provisions and scales necessary compute, memory, and network resources without the need for continuous management. You can convert raw streaming data into various formats such as Apache Parquet and dynamically partition it without the hassle of developing your processing pipelines. Amazon Data Firehose is the most straightforward method to obtain, transform, and dispatch data streams in mere seconds to data lakes, data warehouses, and analytics platforms. To utilize Amazon Data Firehose, simply establish a stream by specifying the source, destination, and any transformations needed. The service continuously processes your data stream, automatically adjusts its scale according to the data volume, and ensures delivery within seconds. You can either choose a source for your data stream or utilize the Firehose Direct PUT API to write data directly. This streamlined approach allows for greater efficiency and flexibility in handling data streams. -
23
Oracle Real Application Clusters (RAC) represents a distinctive and highly available database architecture designed for scaling both reads and writes seamlessly across diverse workloads such as OLTP, analytics, AI data, SaaS applications, JSON, batch processing, text, graph data, IoT, and in-memory operations. It can handle intricate applications with ease, including those from SAP, Oracle Fusion Applications, and Salesforce, while providing exceptional performance. By utilizing a unique fused cache across servers, Oracle RAC ensures the fastest local data access, delivering the lowest latency and highest throughput for all data requirements. The system's ability to parallelize workloads across CPUs maximizes throughput, and Oracle's innovative storage design facilitates effortless online storage expansion. Unlike many databases that rely on public cloud infrastructure, sharding, or read replicas for enhancing scalability, Oracle RAC stands out by offering superior performance with minimal latency and maximum throughput straight out of the box. Furthermore, this architecture is designed to meet the evolving demands of modern applications, making it a future-proof choice for organizations.
-
24
Huawei FusionCube
Huawei
Huawei's FusionCube hyper-converged infrastructure unifies compute, storage, networking, virtualization, and management into a seamless solution designed for exceptional performance, minimal latency, and swift deployment. The integrated distributed storage engines within FusionCube facilitate a profound convergence of computing and storage capabilities. These proprietary engines from Huawei effectively eliminate performance bottlenecks, providing users with the ability to expand capacity flexibly. FusionCube is compatible with leading industry databases and virtualization platforms. Additionally, the Huawei FusionCube 1000 HyperVisor&Data functions as a data storage infrastructure built on a converged architecture. It comes pre-integrated with a distributed storage engine, virtualization software, and cloud management tools, enabling on-demand resource allocation and straightforward linear expansion. This comprehensive approach ensures that organizations can scale their resources efficiently as their needs evolve. -
25
Apache Doris
The Apache Software Foundation
FreeApache Doris serves as a cutting-edge data warehouse tailored for real-time analytics, enabling exceptionally rapid analysis of data at scale. It features both push-based micro-batch and pull-based streaming data ingestion that occurs within a second, alongside a storage engine capable of real-time upserts, appends, and pre-aggregation. With its columnar storage architecture, MPP design, cost-based query optimization, and vectorized execution engine, it is optimized for handling high-concurrency and high-throughput queries efficiently. Moreover, it allows for federated querying across various data lakes, including Hive, Iceberg, and Hudi, as well as relational databases such as MySQL and PostgreSQL. Doris supports complex data types like Array, Map, and JSON, and includes a Variant data type that facilitates automatic inference for JSON structures, along with advanced text search capabilities through NGram bloomfilters and inverted indexes. Its distributed architecture ensures linear scalability and incorporates workload isolation and tiered storage to enhance resource management. Additionally, it accommodates both shared-nothing clusters and the separation of storage from compute resources, providing flexibility in deployment and management. -
26
Imply
Imply
Imply is a cutting-edge analytics platform that leverages Apache Druid to manage extensive, high-performance OLAP (Online Analytical Processing) tasks in real-time. It excels at ingesting data instantly, delivering rapid query results, and enabling intricate analytical inquiries across vast datasets while maintaining low latency. This platform is specifically designed for enterprises that require engaging analytics, real-time dashboards, and data-centric decision-making on a large scale. Users benefit from an intuitive interface for exploring data, enhanced by features like multi-tenancy, detailed access controls, and operational insights. Its distributed architecture and ability to scale make Imply particularly advantageous for applications in streaming data analysis, business intelligence, and real-time monitoring across various sectors. Furthermore, its capabilities ensure that organizations can efficiently adapt to increasing data demands and quickly derive actionable insights from their data. -
27
HStreamDB
EMQ
FreeA streaming database is specifically designed to efficiently ingest, store, process, and analyze large volumes of data streams. This advanced data infrastructure integrates messaging, stream processing, and storage to enable real-time value extraction from your data. It continuously handles vast amounts of data generated by diverse sources, including sensors from IoT devices. Data streams are securely stored in a dedicated distributed streaming data storage cluster that can manage millions of streams. By subscribing to topics in HStreamDB, users can access and consume data streams in real-time at speeds comparable to Kafka. The system also allows for permanent storage of data streams, enabling users to replay and analyze them whenever needed. With a familiar SQL syntax, you can process these data streams based on event-time, similar to querying data in a traditional relational database. This functionality enables users to filter, transform, aggregate, and even join multiple streams seamlessly, enhancing the overall data analysis experience. Ultimately, the integration of these features ensures that organizations can leverage their data effectively and make timely decisions. -
28
PartiQL
PartiQL
PartiQL extends SQL in a manner that is straightforward, allowing nested data to be treated as integral components and enabling a smooth integration with SQL itself. This capability facilitates intuitive operations such as filtering, joining, and aggregating various types of data, including structured, semistructured, and nested datasets. By decoupling the syntax and semantics of queries from the actual data format or storage system, PartiQL provides a cohesive querying experience across diverse data stores and formats. It empowers users to engage with data irrespective of the presence of a standard schema. Additionally, the components of PartiQL—including its syntax, semantics, embedded reference interpreter, command-line interface, testing framework, and associated tests—are distributed under the Apache License, version 2.0. This licensing grants users the freedom to use, modify, and share their contributions while adhering to their preferred terms. Thus, the overall design of PartiQL enhances accessibility and flexibility in data management across various platforms. -
29
R2 SQL
Cloudflare
FreeR2 SQL is a serverless analytics query engine developed by Cloudflare, currently in its open beta phase, that allows users to execute SQL queries on Apache Iceberg tables stored within the R2 Data Catalog without the hassle of managing compute clusters. It is designed to handle vast amounts of data efficiently, utilizing techniques such as metadata pruning, partition-level statistics, and filtering at both the file and row-group levels, all while taking advantage of Cloudflare’s globally distributed compute resources to enhance parallel execution. The system operates by integrating seamlessly with R2 object storage and an Iceberg catalog layer, allowing for data ingestion via Cloudflare Pipelines into Iceberg tables, which can then be queried with ease and minimal overhead. Users can submit queries through the Wrangler CLI or an HTTP API, with access controlled by an API token that provides permissions across R2 SQL, Data Catalog, and storage. Notably, during the open beta period, there are no charges for using R2 SQL itself; costs are only incurred for storage and standard operations within R2. This approach greatly simplifies the analytics process for users, making it more accessible and efficient. -
30
Apache Hive
Apache Software Foundation
1 RatingApache Hive is a data warehouse solution that enables the efficient reading, writing, and management of substantial datasets stored across distributed systems using SQL. It allows users to apply structure to pre-existing data in storage. To facilitate user access, it comes equipped with a command line interface and a JDBC driver. As an open-source initiative, Apache Hive is maintained by dedicated volunteers at the Apache Software Foundation. Initially part of the Apache® Hadoop® ecosystem, it has since evolved into an independent top-level project. We invite you to explore the project further and share your knowledge to enhance its development. Users typically implement traditional SQL queries through the MapReduce Java API, which can complicate the execution of SQL applications on distributed data. However, Hive simplifies this process by offering a SQL abstraction that allows for the integration of SQL-like queries, known as HiveQL, into the underlying Java framework, eliminating the need to delve into the complexities of the low-level Java API. This makes working with large datasets more accessible and efficient for developers. -
31
Upsolver
Upsolver
Upsolver makes it easy to create a governed data lake, manage, integrate, and prepare streaming data for analysis. Only use auto-generated schema on-read SQL to create pipelines. A visual IDE that makes it easy to build pipelines. Add Upserts to data lake tables. Mix streaming and large-scale batch data. Automated schema evolution and reprocessing of previous state. Automated orchestration of pipelines (no Dags). Fully-managed execution at scale Strong consistency guarantee over object storage Nearly zero maintenance overhead for analytics-ready information. Integral hygiene for data lake tables, including columnar formats, partitioning and compaction, as well as vacuuming. Low cost, 100,000 events per second (billions every day) Continuous lock-free compaction to eliminate the "small file" problem. Parquet-based tables are ideal for quick queries. -
32
Google Cloud Datastream
Google
A user-friendly, serverless service for change data capture and replication that provides access to streaming data from a variety of databases including MySQL, PostgreSQL, AlloyDB, SQL Server, and Oracle. This solution enables near real-time analytics in BigQuery, allowing for quick insights and decision-making. With a straightforward setup that includes built-in secure connectivity, organizations can achieve faster time-to-value. The platform is designed to scale automatically, eliminating the need for resource provisioning or management. Utilizing a log-based mechanism, it minimizes the load and potential disruptions on source databases, ensuring smooth operation. This service allows for reliable data synchronization across diverse databases, storage systems, and applications, while keeping latency low and reducing any negative impact on source performance. Organizations can quickly activate the service, enjoying the benefits of a scalable solution with no infrastructure overhead. Additionally, it facilitates seamless data integration across the organization, leveraging the power of Google Cloud services such as BigQuery, Spanner, Dataflow, and Data Fusion, thus enhancing overall operational efficiency and data accessibility. This comprehensive approach not only streamlines data processes but also empowers teams to make informed decisions based on timely data insights. -
33
Introducing a versatile and free database management tool designed for developers, database administrators, analysts, and anyone who engages with databases. It offers compatibility with a wide range of popular databases, including MySQL, PostgreSQL, SQLite, Oracle, DB2, SQL Server, Sybase, MS Access, Teradata, Firebird, Apache Hive, Phoenix, Presto, among others. Recent updates include a new format configuration editor for the "Copy As" feature, enhanced performance through additional configurations in the filter dialog, and the ability to sort by column with fixed settings for smaller fetch sizes. Users can now benefit from case-insensitive filters, while the plaintext view has been improved by incorporating top and bottom dividers. Furthermore, the data editor has been rectified to address issues arising from column name conflicts with alias names, and the command for duplicating rows has been fixed for cases involving multiple selections. The context menu has been updated to include the edit sub-menu once again, and auto-sizing configurations for columns have been introduced. Additionally, the dictionary viewer has been corrected for use with read-only connections, and new features support current and selected row highlighting, which can be customized according to user preferences. This tool continues to evolve, ensuring that users have the best possible experience while working with their database management tasks.
-
34
LogFusion
Binary Fortress Software
LogFusion is an advanced real-time log monitoring tool that caters to the needs of system administrators and developers alike! It offers features like personalized highlighting rules and filtering options, allowing users to customize their experience. Additionally, users can synchronize their LogFusion preferences across multiple devices. The application's robust custom highlighting enables the identification of specific text strings or regex patterns, applying tailored formatting to the relevant log entries. With LogFusion's sophisticated text filtering capability, users can seamlessly filter out and conceal lines that do not correspond with their search criteria, all while new entries are continuously added. The platform supports intricate queries, making it straightforward to refine your search results. Moreover, LogFusion can automatically detect and incorporate new logs from designated Watched Folders; simply choose the folders you want to monitor, and LogFusion takes care of opening any new log files generated in those locations. This ensures that users remain up-to-date with the latest log data effortlessly. -
35
Greenplum
Greenplum Database
Greenplum Database® stands out as a sophisticated, comprehensive, and open-source data warehouse solution. It excels in providing swift and robust analytics on data volumes that reach petabyte scales. Designed specifically for big data analytics, Greenplum Database is driven by a highly advanced cost-based query optimizer that ensures exceptional performance for analytical queries on extensive data sets. This project operates under the Apache 2 license, and we extend our gratitude to all current contributors while inviting new ones to join our efforts. In the Greenplum Database community, every contribution is valued, regardless of its size, and we actively encourage diverse forms of involvement. This platform serves as an open-source, massively parallel data environment tailored for analytics, machine learning, and artificial intelligence applications. Users can swiftly develop and implement models aimed at tackling complex challenges in fields such as cybersecurity, predictive maintenance, risk management, and fraud detection, among others. Dive into the experience of a fully integrated, feature-rich open-source analytics platform that empowers innovation. -
36
DeltaStream
DeltaStream
DeltaStream is an integrated serverless streaming processing platform that integrates seamlessly with streaming storage services. Imagine it as a compute layer on top your streaming storage. It offers streaming databases and streaming analytics along with other features to provide an integrated platform for managing, processing, securing and sharing streaming data. DeltaStream has a SQL-based interface that allows you to easily create stream processing apps such as streaming pipelines. It uses Apache Flink, a pluggable stream processing engine. DeltaStream is much more than a query-processing layer on top Kafka or Kinesis. It brings relational databases concepts to the world of data streaming, including namespacing, role-based access control, and enables you to securely access and process your streaming data, regardless of where it is stored. -
37
Databend
Databend
FreeDatabend is an innovative, cloud-native data warehouse crafted to provide high-performance and cost-effective analytics for extensive data processing needs. Its architecture is elastic, allowing it to scale dynamically in response to varying workload demands, thus promoting efficient resource use and reducing operational expenses. Developed in Rust, Databend delivers outstanding performance through features such as vectorized query execution and columnar storage, which significantly enhance data retrieval and processing efficiency. The cloud-first architecture facilitates smooth integration with various cloud platforms while prioritizing reliability, data consistency, and fault tolerance. As an open-source solution, Databend presents a versatile and accessible option for data teams aiming to manage big data analytics effectively in cloud environments. Additionally, its continuous updates and community support ensure that users can take advantage of the latest advancements in data processing technology. -
38
Apache Arrow
The Apache Software Foundation
Apache Arrow establishes a columnar memory format that is independent of any programming language, designed to handle both flat and hierarchical data, which allows for optimized analytical processes on contemporary hardware such as CPUs and GPUs. This memory format enables zero-copy reads, facilitating rapid data access without incurring serialization delays. Libraries associated with Arrow not only adhere to this format but also serve as foundational tools for diverse applications, particularly in high-performance analytics. Numerous well-known projects leverage Arrow to efficiently manage columnar data or utilize it as a foundation for analytic frameworks. Developed by the community for the community, Apache Arrow emphasizes open communication and collaborative decision-making. With contributors from various organizations and backgrounds, we encourage inclusive participation in our ongoing efforts and developments. Through collective contributions, we aim to enhance the functionality and accessibility of data analytics tools. -
39
SlashDB
SlashDB
$200 per database per monthSlashDB creates a REST API from relational databases, enabling users to read and write data in user-friendly formats such as XML, JSON, and CSV. Furthermore, it allows users to easily navigate through data using HTML, helping them to explore the available databases, tables, queries, and API endpoints. With the capability to serve as a central access point for multiple databases, SlashDB effectively establishes a comprehensive resource-oriented architecture (ROA) that functions as an API gateway for users seeking data access. Each database is provided with a web service shell that translates its relational structures into a coherent library of uniform resource locators (URLs). Adhering to REST principles, each data element is assigned a unique identifying URL, whether it consists of a simple scalar value or a complex nested structure of interrelated records. This functionality enhances data accessibility and organization, making it easier for developers to integrate and utilize varied data sources. -
40
PeerDB
PeerDB
$250 per monthWhen PostgreSQL serves as the foundation of your enterprise and is a key data source, PeerDB offers an efficient, straightforward, and economical solution for replicating data from PostgreSQL to data warehouses, queues, and storage systems. It is engineered to function seamlessly at any scale and is specifically adapted for various data repositories. By utilizing replication messages sourced from the PostgreSQL replication slot, PeerDB adeptly replays schema updates while providing alerts for slot growth and active connections. It also includes native support for PostgreSQL toast columns and large JSONB columns, making it particularly advantageous for IoT applications. The platform features an optimized query architecture aimed at minimizing warehouse expenditures, which is especially beneficial for users of Snowflake and BigQuery. Additionally, it accommodates partitioned tables through both publication mechanisms. PeerDB ensures rapid and reliable initial data loads via transaction snapshotting and CTID scanning techniques. With features such as high availability, in-place upgrades, autoscaling, advanced logging, comprehensive metrics, and monitoring dashboards, as well as burstable instance types, it is also well-suited for development environments. Overall, PeerDB stands out as a versatile tool that effectively meets the diverse needs of modern data management. -
41
Materialize
Materialize
$0.98 per hourMaterialize is an innovative reactive database designed to provide updates to views incrementally. It empowers developers to seamlessly work with streaming data through the use of standard SQL. One of the key advantages of Materialize is its ability to connect directly to a variety of external data sources without the need for pre-processing. Users can link to real-time streaming sources such as Kafka, Postgres databases, and change data capture (CDC), as well as access historical data from files or S3. The platform enables users to execute queries, perform joins, and transform various data sources using standard SQL, presenting the outcomes as incrementally-updated Materialized views. As new data is ingested, queries remain active and are continuously refreshed, allowing developers to create data visualizations or real-time applications with ease. Moreover, constructing applications that utilize streaming data becomes a straightforward task, often requiring just a few lines of SQL code, which significantly enhances productivity. With Materialize, developers can focus on building innovative solutions rather than getting bogged down in complex data management tasks. -
42
Database Tour Pro
Vitaliy Levchenko Software
Database Tour stands out in the competitive landscape of database tools due to several advantageous features. It offers an intuitive SQL editor complete with syntax highlighting, code completion, and interactive object navigation through Ctrl+click functionality. Users can manage multiple windows, each supporting distinct transactions, and execute complex multi-statement SQL scripts seamlessly. Additionally, it tracks SQL execution statistics for every query window, enhancing performance monitoring. The tool simplifies various database operations, including effective text searches, replacements, and batch data processing. Its data grids are particularly impressive, allowing users to handle large text (CLOB/MEMO) and graphical data with ease, while providing functionalities like row expansion, autoscrolling, sorting, and the ability to select and copy groups of records. Conditional formatting is also a key feature, allowing data in tables to be highlighted based on its content, making it easier to analyze. Moreover, Database Tour includes specialized tools for managing BLOB fields, enhancing its versatility for users dealing with large objects. This combination of features ensures that Database Tour remains a robust choice for database management tasks. -
43
Ververica
Ververica
Ververica Platform allows every company to immediately benefit from and gain insight from its data in real time. Ververica Platform is powered by Apache Flink's robust streaming platform. It provides an integrated solution for streaming analytics and stateful stream processing at scale. Ververica Platform is powered by Apache Flink and offers high throughput, low latency data processing and powerful abstractions. It also has the operational flexibility that some of the most successful data-driven companies such as Uber, Netflix, and Alibaba. Ververica Platform combines the knowledge gained from our work with large, innovative, data-driven enterprises into an accessible, cost-effective, and secure platform that is enterprise-ready. -
44
Prometheus
Prometheus
FreeEnhance your metrics and alerting capabilities using a top-tier open-source monitoring tool. Prometheus inherently organizes all data as time series, which consist of sequences of timestamped values associated with the same metric and a specific set of labeled dimensions. In addition to the stored time series, Prometheus has the capability to create temporary derived time series based on query outcomes. The tool features a powerful query language known as PromQL (Prometheus Query Language), allowing users to select and aggregate time series data in real time. The output from an expression can be displayed as a graph, viewed in tabular format through Prometheus’s expression browser, or accessed by external systems through the HTTP API. Configuration of Prometheus is achieved through a combination of command-line flags and a configuration file, where the flags are used to set immutable system parameters like storage locations and retention limits for both disk and memory. This dual method of configuration ensures a flexible and tailored monitoring setup that can adapt to various user needs. For those interested in exploring this robust tool, further details can be found at: https://sourceforge.net/projects/prometheus.mirror/ -
45
CData Connect AI
CData
CData's artificial intelligence solution revolves around Connect AI, which offers AI-enhanced connectivity features that enable real-time, governed access to enterprise data without transferring it from the original systems. Connect AI operates on a managed Model Context Protocol (MCP) platform, allowing AI assistants, agents, copilots, and embedded AI applications to directly access and query over 300 data sources, including CRM, ERP, databases, and APIs, while fully comprehending the semantics and relationships of the data. The platform guarantees the enforcement of source system authentication, adheres to existing role-based permissions, and ensures that AI operations—both reading and writing—comply with governance and auditing standards. Furthermore, it facilitates capabilities such as query pushdown, parallel paging, bulk read/write functions, and streaming for extensive datasets, in addition to enabling cross-source reasoning through a cohesive semantic layer. Moreover, CData's "Talk to your Data" feature synergizes with its Virtuality offering, permitting users to engage in conversational interactions to retrieve BI insights and generate reports efficiently. This integration not only enhances user experience but also streamlines data accessibility across the enterprise.