DbVisualizer
DbVisualizer is one of the world’s most popular database clients.
Developers, analysts, and DBAs use it to advance their SQL experience with modern tools to visualize and manage their databases, schemas, objects, and table data and to auto-generate, write and optimize queries.
It has extended support for 30+ of the major databases and has basic-level support for all databases that can be accessed with a JDBC driver. DbVisualizer runs on all major OSes.
Free and Pro versions are available.
Learn more
AnalyticsCreator
Accelerate your data journey with AnalyticsCreator—a metadata-driven data warehouse automation solution purpose-built for the Microsoft data ecosystem. AnalyticsCreator simplifies the design, development, and deployment of modern data architectures, including dimensional models, data marts, data vaults, or blended modeling approaches tailored to your business needs.
Seamlessly integrate with Microsoft SQL Server, Azure Synapse Analytics, Microsoft Fabric (including OneLake and SQL Endpoint Lakehouse environments), and Power BI. AnalyticsCreator automates ELT pipeline creation, data modeling, historization, and semantic layer generation—helping reduce tool sprawl and minimizing manual SQL coding.
Designed to support CI/CD pipelines, AnalyticsCreator connects easily with Azure DevOps and GitHub for version-controlled deployments across development, test, and production environments. This ensures faster, error-free releases while maintaining governance and control across your entire data engineering workflow.
Key features include automated documentation, end-to-end data lineage tracking, and adaptive schema evolution—enabling teams to manage change, reduce risk, and maintain auditability at scale. AnalyticsCreator empowers agile data engineering by enabling rapid prototyping and production-grade deployments for Microsoft-centric data initiatives.
By eliminating repetitive manual tasks and deployment risks, AnalyticsCreator allows your team to focus on delivering actionable business insights—accelerating time-to-value for your data products and analytics initiatives.
Learn more
Upsolver
Upsolver makes it easy to create a governed data lake, manage, integrate, and prepare streaming data for analysis. Only use auto-generated schema on-read SQL to create pipelines. A visual IDE that makes it easy to build pipelines. Add Upserts to data lake tables. Mix streaming and large-scale batch data. Automated schema evolution and reprocessing of previous state. Automated orchestration of pipelines (no Dags). Fully-managed execution at scale Strong consistency guarantee over object storage Nearly zero maintenance overhead for analytics-ready information. Integral hygiene for data lake tables, including columnar formats, partitioning and compaction, as well as vacuuming. Low cost, 100,000 events per second (billions every day) Continuous lock-free compaction to eliminate the "small file" problem. Parquet-based tables are ideal for quick queries.
Learn more
Open mHealth
Data schemas define the structure and content of various types of information, such as blood glucose levels, influencing how software applications manage that information. Often, systems must accommodate data from multiple devices or platforms, each presenting information in its own unique way. When all data related to a specific metric, like blood glucose, adheres to a unified schema, it becomes significantly easier to analyze and interpret that information, regardless of its original source. A standardized schema acts as a consistent point of reference for documentation, facilitating the use of data points across different contexts. In the realm of healthcare, the importance of common data schemas is magnified due to the intricate nature and significance of health-related information. For instance, recognizing the difference between fasting and non-fasting blood glucose levels is crucial for accurate clinical interpretation and decision-making. This shared understanding ensures that healthcare professionals can communicate effectively and make informed decisions based on reliable data.
Learn more