Best Apache Arrow Alternatives in 2025
Find the top alternatives to Apache Arrow currently available. Compare ratings, reviews, pricing, and features of Apache Arrow alternatives in 2025. Slashdot lists the best Apache Arrow alternatives on the market that offer competing products that are similar to Apache Arrow. Sort through Apache Arrow alternatives below to make the best choice for your needs
-
1
BigQuery is a serverless, multicloud data warehouse that makes working with all types of data effortless, allowing you to focus on extracting valuable business insights quickly. As a central component of Google’s data cloud, it streamlines data integration, enables cost-effective and secure scaling of analytics, and offers built-in business intelligence for sharing detailed data insights. With a simple SQL interface, it also supports training and deploying machine learning models, helping to foster data-driven decision-making across your organization. Its robust performance ensures that businesses can handle increasing data volumes with minimal effort, scaling to meet the needs of growing enterprises. Gemini within BigQuery brings AI-powered tools that enhance collaboration and productivity, such as code recommendations, visual data preparation, and intelligent suggestions aimed at improving efficiency and lowering costs. The platform offers an all-in-one environment with SQL, a notebook, and a natural language-based canvas interface, catering to data professionals of all skill levels. This cohesive workspace simplifies the entire analytics journey, enabling teams to work faster and more efficiently.
-
2
StarTree
StarTree
25 RatingsStarTree Cloud is a fully-managed real-time analytics platform designed for OLAP at massive speed and scale for user-facing applications. Powered by Apache Pinot, StarTree Cloud provides enterprise-grade reliability and advanced capabilities such as tiered storage, scalable upserts, plus additional indexes and connectors. It integrates seamlessly with transactional databases and event streaming platforms, ingesting data at millions of events per second and indexing it for lightning-fast query responses. StarTree Cloud is available on your favorite public cloud or for private SaaS deployment. StarTree Cloud includes StarTree Data Manager, which allows you to ingest data from both real-time sources such as Amazon Kinesis, Apache Kafka, Apache Pulsar, or Redpanda, as well as batch data sources such as data warehouses like Snowflake, Delta Lake or Google BigQuery, or object stores like Amazon S3, Apache Flink, Apache Hadoop, or Apache Spark. StarTree ThirdEye is an add-on anomaly detection system running on top of StarTree Cloud that observes your business-critical metrics, alerting you and allowing you to perform root-cause analysis — all in real-time. -
3
Looker
Google
20 RatingsLooker reinvents the way business intelligence (BI) works by delivering an entirely new kind of data discovery solution that modernizes BI in three important ways. A simplified web-based stack leverages our 100% in-database architecture, so customers can operate on big data and find the last mile of value in the new era of fast analytic databases. An agile development environment enables today’s data rockstars to model the data and create end-user experiences that make sense for each specific business, transforming data on the way out, rather than on the way in. At the same time, a self-service data-discovery experience works the way the web works, empowering business users to drill into and explore very large datasets without ever leaving the browser. As a result, Looker customers enjoy the power of traditional BI at the speed of the web. -
4
IBM® SPSS® Statistics software is used by a variety of customers to solve industry-specific business issues to drive quality decision-making. The IBM® SPSS® software platform offers advanced statistical analysis, a vast library of machine learning algorithms, text analysis, open-source extensibility, integration with big data and seamless deployment into applications. Its ease of use, flexibility and scalability make SPSS accessible to users of all skill levels. What’s more, it’s suitable for projects of all sizes and levels of complexity, and can help you find new opportunities, improve efficiency and minimize risk.
-
5
Dremio
Dremio
Dremio provides lightning-fast queries as well as a self-service semantic layer directly to your data lake storage. No data moving to proprietary data warehouses, and no cubes, aggregation tables, or extracts. Data architects have flexibility and control, while data consumers have self-service. Apache Arrow and Dremio technologies such as Data Reflections, Columnar Cloud Cache(C3), and Predictive Pipelining combine to make it easy to query your data lake storage. An abstraction layer allows IT to apply security and business meaning while allowing analysts and data scientists access data to explore it and create new virtual datasets. Dremio's semantic layers is an integrated searchable catalog that indexes all your metadata so business users can make sense of your data. The semantic layer is made up of virtual datasets and spaces, which are all searchable and indexed. -
6
Apache Iceberg
Apache Software Foundation
FreeIceberg is an advanced format designed for managing extensive analytical tables efficiently. It combines the dependability and ease of SQL tables with the capabilities required for big data, enabling multiple engines such as Spark, Trino, Flink, Presto, Hive, and Impala to access and manipulate the same tables concurrently without issues. The format allows for versatile SQL operations to incorporate new data, modify existing records, and execute precise deletions. Additionally, Iceberg can optimize read performance by eagerly rewriting data files or utilize delete deltas to facilitate quicker updates. It also streamlines the complex and often error-prone process of generating partition values for table rows while automatically bypassing unnecessary partitions and files. Fast queries do not require extra filtering, and the structure of the table can be adjusted dynamically as data and query patterns evolve, ensuring efficiency and adaptability in data management. This adaptability makes Iceberg an essential tool in modern data workflows. -
7
Upsolver
Upsolver
Upsolver makes it easy to create a governed data lake, manage, integrate, and prepare streaming data for analysis. Only use auto-generated schema on-read SQL to create pipelines. A visual IDE that makes it easy to build pipelines. Add Upserts to data lake tables. Mix streaming and large-scale batch data. Automated schema evolution and reprocessing of previous state. Automated orchestration of pipelines (no Dags). Fully-managed execution at scale Strong consistency guarantee over object storage Nearly zero maintenance overhead for analytics-ready information. Integral hygiene for data lake tables, including columnar formats, partitioning and compaction, as well as vacuuming. Low cost, 100,000 events per second (billions every day) Continuous lock-free compaction to eliminate the "small file" problem. Parquet-based tables are ideal for quick queries. -
8
Exasol
Exasol
An in-memory, column-oriented database combined with a Massively Parallel Processing (MPP) architecture enables the rapid querying of billions of records within mere seconds. The distribution of queries across all nodes in a cluster ensures linear scalability, accommodating a larger number of users and facilitating sophisticated analytics. The integration of MPP, in-memory capabilities, and columnar storage culminates in a database optimized for exceptional data analytics performance. With various deployment options available, including SaaS, cloud, on-premises, and hybrid solutions, data analysis can be performed in any environment. Automatic tuning of queries minimizes maintenance efforts and reduces operational overhead. Additionally, the seamless integration and efficiency of performance provide enhanced capabilities at a significantly lower cost compared to traditional infrastructure. Innovative in-memory query processing has empowered a social networking company to enhance its performance, handling an impressive volume of 10 billion data sets annually. This consolidated data repository, paired with a high-speed engine, accelerates crucial analytics, leading to better patient outcomes and improved financial results for the organization. As a result, businesses can leverage this technology to make quicker data-driven decisions, ultimately driving further success. -
9
BryteFlow
BryteFlow
BryteFlow creates remarkably efficient automated analytics environments that redefine data processing. By transforming Amazon S3 into a powerful analytics platform, it skillfully utilizes the AWS ecosystem to provide rapid data delivery. It works seamlessly alongside AWS Lake Formation and automates the Modern Data Architecture, enhancing both performance and productivity. Users can achieve full automation in data ingestion effortlessly through BryteFlow Ingest’s intuitive point-and-click interface, while BryteFlow XL Ingest is particularly effective for the initial ingestion of very large datasets, all without the need for any coding. Moreover, BryteFlow Blend allows users to integrate and transform data from diverse sources such as Oracle, SQL Server, Salesforce, and SAP, preparing it for advanced analytics and machine learning applications. With BryteFlow TruData, the reconciliation process between the source and destination data occurs continuously or at a user-defined frequency, ensuring data integrity. If any discrepancies or missing information arise, users receive timely alerts, enabling them to address issues swiftly, thus maintaining a smooth data flow. This comprehensive suite of tools ensures that businesses can operate with confidence in their data's accuracy and accessibility. -
10
Apache Druid
Druid
Apache Druid is a distributed data storage solution that is open source. Its fundamental architecture merges concepts from data warehouses, time series databases, and search technologies to deliver a high-performance analytics database capable of handling a diverse array of applications. By integrating the essential features from these three types of systems, Druid optimizes its ingestion process, storage method, querying capabilities, and overall structure. Each column is stored and compressed separately, allowing the system to access only the relevant columns for a specific query, which enhances speed for scans, rankings, and groupings. Additionally, Druid constructs inverted indexes for string data to facilitate rapid searching and filtering. It also includes pre-built connectors for various platforms such as Apache Kafka, HDFS, and AWS S3, as well as stream processors and others. The system adeptly partitions data over time, making queries based on time significantly quicker than those in conventional databases. Users can easily scale resources by simply adding or removing servers, and Druid will manage the rebalancing automatically. Furthermore, its fault-tolerant design ensures resilience by effectively navigating around any server malfunctions that may occur. This combination of features makes Druid a robust choice for organizations seeking efficient and reliable real-time data analytics solutions. -
11
Alteryx
Alteryx
Embrace a groundbreaking age of analytics through the Alteryx AI Platform. Equip your organization with streamlined data preparation, analytics powered by artificial intelligence, and accessible machine learning, all while ensuring governance and security are built in. This marks the dawn of a new era for data-driven decision-making accessible to every user and team at all levels. Enhance your teams' capabilities with a straightforward, user-friendly interface that enables everyone to develop analytical solutions that boost productivity, efficiency, and profitability. Foster a robust analytics culture by utilizing a comprehensive cloud analytics platform that allows you to convert data into meaningful insights via self-service data preparation, machine learning, and AI-generated findings. Minimize risks and safeguard your data with cutting-edge security protocols and certifications. Additionally, seamlessly connect to your data and applications through open API standards, facilitating a more integrated and efficient analytical environment. By adopting these innovations, your organization can thrive in an increasingly data-centric world. -
12
Qlik Sense
Qlik
Enable individuals across varying skill levels to engage in data-informed decision-making and take meaningful action when it counts the most. Experience richer interactivity and a wider context at unprecedented speeds. Qlik stands apart from the competition with its exceptional Associative technology, which infuses unparalleled strength into our top-tier analytics platform. Allow all your users to navigate data seamlessly and swiftly, with rapid calculations always presented in context and at scale. This innovation is indeed significant. Qlik Sense transcends the boundaries of conventional query-based analytics and dashboard solutions offered by rivals. With the Insight Advisor feature in Qlik Sense, AI assists users in comprehending and utilizing data more effectively, reducing cognitive biases, enhancing discovery, and boosting data literacy. In today's fast-paced environment, organizations require an agile connection with their data that adapts to the ever-changing landscape. The conventional, passive approach to business intelligence simply does not meet these needs. -
13
OpenText Analytics Database is a cutting-edge analytics platform designed to accelerate decision-making and operational efficiency through fast, real-time data processing and advanced machine learning. Organizations benefit from its flexible deployment options, including on-premises, hybrid, and multi-cloud environments, enabling them to tailor analytics infrastructure to their specific needs and lower overall costs. The platform’s massively parallel processing (MPP) architecture delivers lightning-fast query performance across large, complex datasets. It supports columnar storage and data lakehouse compatibility, allowing seamless analysis of data stored in various formats such as Parquet, ORC, and AVRO. Users can interact with data using familiar languages like SQL, R, Python, Java, and C/C++, making it accessible for both technical and business users. In-database machine learning capabilities allow for building and deploying predictive models without moving data, providing real-time insights. Additional analytics functions include time series, geospatial, and event-pattern matching, enabling deep and diverse data exploration. OpenText Analytics Database is ideal for organizations looking to harness AI and analytics to drive smarter business decisions.
-
14
Actian Vector
Actian
Actian Vector is a high-performance, vectorized columnar analytics database that has consistently excelled as a performance leader in the TPC-H decision support benchmark for the past five years. It offers full compliance with the industry-standard ANSI SQL:2003 and supports an extensive range of data formats, alongside features for updates, security, management, and replication. Renowned as the fastest analytic database in the industry, Actian Vector's capability to manage continuous updates without sacrificing performance allows it to function effectively as an Operational Data Warehouse (ODW), seamlessly integrating the most recent business data into analytic decision-making processes. The database delivers outstanding performance while maintaining full ACID compliance, all on standard hardware, and provides the flexibility to be deployed on-premises or in cloud environments such as AWS or Azure, requiring minimal database tuning. Additionally, Actian Vector is compatible with Microsoft Windows for single-server deployment, and it comes equipped with Actian Director for user-friendly GUI management, as well as a command line interface for efficient scripting, making it a comprehensive solution for analytics needs. This combination of robust features and performance promises to enhance your data analysis capabilities significantly. -
15
Kyvos is a semantic data lakehouse designed to speed up every BI and AI initiative, offering lightning-fast analytics at an infinite scale with maximum cost efficiency and the lowest possible carbon footprint. The platform provides high-performance storage for both structured and unstructured data, ensuring trusted data for AI applications. It is built to scale seamlessly, making it an ideal solution for enterprises aiming to maximize their data’s potential. Kyvos is infrastructure-agnostic, which means it fits perfectly into any modern data or AI stack, whether deployed on-premises or in the cloud. Leading companies rely on Kyvos as a unified source for cost-effective, high-performance analytics that foster deep, meaningful insights and context-aware AI application development. By leveraging Kyvos, organizations can break through data barriers, accelerate decision-making, and enhance their AI-driven initiatives. The platform's flexibility allows businesses to create a scalable foundation for a range of data-driven solutions.
-
16
Google Cloud Dataproc
Google
Dataproc enhances the speed, simplicity, and security of open source data and analytics processing in the cloud. You can swiftly create tailored OSS clusters on custom machines to meet specific needs. Whether your project requires additional memory for Presto or GPUs for machine learning in Apache Spark, Dataproc facilitates the rapid deployment of specialized clusters in just 90 seconds. The platform offers straightforward and cost-effective cluster management options. Features such as autoscaling, automatic deletion of idle clusters, and per-second billing contribute to minimizing the overall ownership costs of OSS, allowing you to allocate your time and resources more effectively. Built-in security measures, including default encryption, guarantee that all data remains protected. With the JobsAPI and Component Gateway, you can easily manage permissions for Cloud IAM clusters without the need to configure networking or gateway nodes, ensuring a streamlined experience. Moreover, the platform's user-friendly interface simplifies the management process, making it accessible for users at all experience levels. -
17
GeoSpock
GeoSpock
GeoSpock revolutionizes data integration for a connected universe through its innovative GeoSpock DB, a cutting-edge space-time analytics database. This cloud-native solution is specifically designed for effective querying of real-world scenarios, enabling the combination of diverse Internet of Things (IoT) data sources to fully harness their potential, while also streamlining complexity and reducing expenses. With GeoSpock DB, users benefit from efficient data storage, seamless fusion, and quick programmatic access, allowing for the execution of ANSI SQL queries and the ability to link with analytics platforms through JDBC/ODBC connectors. Analysts can easily conduct evaluations and disseminate insights using familiar toolsets, with compatibility for popular business intelligence tools like Tableau™, Amazon QuickSight™, and Microsoft Power BI™, as well as support for data science and machine learning frameworks such as Python Notebooks and Apache Spark. Furthermore, the database can be effortlessly integrated with internal systems and web services, ensuring compatibility with open-source and visualization libraries, including Kepler and Cesium.js, thus expanding its versatility in various applications. This comprehensive approach empowers organizations to make data-driven decisions efficiently and effectively. -
18
SigView
Sigmoid
Gain access to detailed data for seamless analysis of billions of rows and achieve real-time reporting in mere seconds! Sigview, a plug-and-play data analytics tool from Sigmoid, simplifies exploratory data analysis and is built on Apache Spark, allowing users to delve into extensive data sets almost instantly. With approximately 30,000 users worldwide leveraging this tool to evaluate billions of ad impressions, Sigview is expertly designed to provide immediate access to both programmatic and non-programmatic data while generating real-time reports. Whether your aim is to enhance ad campaign performance, uncover new inventory, or explore revenue opportunities in an evolving market, Sigview serves as the ultimate platform for your reporting requirements. It seamlessly connects to various data sources, including DFP, Pixel Servers, and audience viewability partners, enabling the ingestion of data in any format and location while ensuring data latency remains below 15 minutes. This capability allows users to make informed decisions quickly and adapt to changing business landscapes with confidence. -
19
biGENIUS
biGENIUS AG
833CHF/seat/ month biGENIUS automates all phases of analytic data management solutions (e.g. data warehouses, data lakes and data marts. thereby allowing you to turn your data into a business as quickly and cost-effectively as possible. Your data analytics solutions will save you time, effort and money. Easy integration of new ideas and data into data analytics solutions. The metadata-driven approach allows you to take advantage of new technologies. Advancement of digitalization requires traditional data warehouses (DWH) as well as business intelligence systems to harness an increasing amount of data. Analytical data management is essential to support business decision making today. It must integrate new data sources, support new technologies, and deliver effective solutions faster than ever, ideally with limited resources. -
20
SAP HANA
SAP
SAP HANA is an in-memory database designed to handle both transactional and analytical workloads using a single copy of data, regardless of type. It effectively dissolves the barriers between transactional and analytical processes within organizations, facilitating rapid decision-making whether deployed on-premises or in the cloud. This innovative database management system empowers users to create intelligent, real-time solutions, enabling swift decision-making from a unified data source. By incorporating advanced analytics, it enhances the capabilities of next-generation transaction processing. Organizations can build data solutions that capitalize on cloud-native attributes such as scalability, speed, and performance. With SAP HANA Cloud, businesses can access reliable, actionable information from one cohesive platform while ensuring robust security, privacy, and data anonymization, reflecting proven enterprise standards. In today's fast-paced environment, an intelligent enterprise relies on timely insights derived from data, emphasizing the need for real-time delivery of such valuable information. As the demand for immediate access to insights grows, leveraging an efficient database like SAP HANA becomes increasingly critical for organizations aiming to stay competitive. -
21
IBM® Sterling Transformation Extender empowers organizations to seamlessly integrate transactions involving customers, suppliers, and business partners across their entire operations. This tool automates the intricate processes of data transformation and validation, accommodating a wide array of formats and standards. Users can execute data transformations in both on-premises settings and cloud environments. Furthermore, it offers advanced transformation capabilities that include metadata for mapping, compliance verification, and related processing functionalities tailored to specific sectors, such as finance, healthcare, and supply chain management. The system supports both structured and unstructured data, along with custom formats, and is compatible with on-premises, hybrid, private, and public cloud configurations. With a strong focus on user experience, it features RESTful APIs for enhanced functionality. The solution facilitates complex transformations and validation of data across multiple formats, enabling any-to-any data transformation while being containerized for cloud deployment. Additionally, it includes industry-specific packs to further streamline operations and enhance efficiency.
-
22
MotherDuck
MotherDuck
We are MotherDuck, a dynamic software company created by a dedicated group of seasoned data enthusiasts. Our team has held leadership roles in some of the most prestigious data organizations. Instead of focusing on costly and sluggish scale-out solutions, we propose a scale-up approach. The era of Big Data is behind us; it’s time for the era of easy data to take the lead. Your laptop outperforms your data warehouse, so why should you have to wait for the cloud? DuckDB has proven its worth, so let’s enhance its capabilities. When we established MotherDuck, we saw DuckDB as a potential revolutionary tool due to its user-friendliness, portability, incredible speed, and the swift evolution driven by its community. At MotherDuck, our mission is to support the community, the DuckDB Foundation, and DuckDB Labs in enhancing the recognition and adoption of DuckDB, catering to users who prefer local work or desire a serverless, always-on SQL execution method. Our exceptional team comprises engineers and leaders with extensive backgrounds in databases and cloud technologies from industry giants such as AWS, Databricks, Elastic, Facebook, Firebolt, Google BigQuery, Neo4j, SingleStore, and many others. We believe that with the right tools and community, the future of data management can be redefined for everyone. -
23
Xurmo
Xurmo
Data-driven organizations, regardless of their preparedness, face significant challenges stemming from the ever-increasing volume, speed, and diversity of data. As the demand for advanced analytics intensifies, the limitations of infrastructure, time, and human resources become more pronounced. Xurmo effectively addresses these challenges with its user-friendly, self-service platform. Users can configure and ingest any type of data through a single interface effortlessly. Whether dealing with structured or unstructured data, Xurmo seamlessly incorporates it into the analysis process. Allow Xurmo to handle the heavy lifting so you can focus on configuring intelligent solutions. From developing analytical models to deploying them in an automated fashion, Xurmo provides interactive support throughout the journey. Furthermore, it enables the automation of intelligence derived from even the most intricate, rapidly changing datasets. With Xurmo, analytical models can be both customized and deployed across various data environments, ensuring flexibility and efficiency in the analytics process. This comprehensive solution empowers organizations to harness their data effectively, transforming challenges into opportunities for insight. -
24
Qubole
Qubole
Qubole stands out as a straightforward, accessible, and secure Data Lake Platform tailored for machine learning, streaming, and ad-hoc analysis. Our comprehensive platform streamlines the execution of Data pipelines, Streaming Analytics, and Machine Learning tasks across any cloud environment, significantly minimizing both time and effort. No other solution matches the openness and versatility in handling data workloads that Qubole provides, all while achieving a reduction in cloud data lake expenses by more than 50 percent. By enabling quicker access to extensive petabytes of secure, reliable, and trustworthy datasets, we empower users to work with both structured and unstructured data for Analytics and Machine Learning purposes. Users can efficiently perform ETL processes, analytics, and AI/ML tasks in a seamless workflow, utilizing top-tier open-source engines along with a variety of formats, libraries, and programming languages tailored to their data's volume, diversity, service level agreements (SLAs), and organizational regulations. This adaptability ensures that Qubole remains a preferred choice for organizations aiming to optimize their data management strategies while leveraging the latest technological advancements. -
25
OptimalPlus
NI
Leverage cutting-edge, actionable analytics to enhance your manufacturing effectiveness, speed up the introduction of new products, and simultaneously improve their reliability. By utilizing the foremost big data analytics platform and years of specialized knowledge, you can elevate the efficiency, quality, and dependability of your manufacturing processes. Furthermore, gain crucial insights into your supply chain while maximizing manufacturing performance and accelerating the product development cycle. As a lifecycle analytics firm, we empower automotive and semiconductor manufacturers to fully utilize their data. Our innovative open platform is meticulously crafted for your sector, offering an in-depth understanding of all product attributes and fostering innovation through a holistic end-to-end solution that incorporates advanced analytics, artificial intelligence, and machine learning, setting the foundation for future advancements. This comprehensive approach ensures that you not only stay competitive but also lead in your industry. -
26
Google Cloud Analytics Hub
Google
Google Cloud's Analytics Hub serves as a data exchange platform that empowers organizations to share data assets securely and efficiently beyond their internal boundaries, tackling issues related to data integrity and associated costs. Leveraging the robust scalability and adaptability of BigQuery, it enables users to create a comprehensive library encompassing both internal and external datasets, including distinctive data like Google Trends. The platform simplifies the publication, discovery, and subscription processes for data exchanges, eliminating the need for data transfers and enhancing the ease of access to data and analytical resources. Additionally, Analytics Hub ensures privacy-safe and secure data sharing through stringent governance practices, incorporating advanced security features and encryption protocols from BigQuery, Cloud IAM, and VPC Security Controls. By utilizing Analytics Hub, organizations can maximize the return on their data investment through effective data exchange strategies, while also fostering collaboration across different departments. Ultimately, this innovative platform enhances data-driven decision-making by providing seamless access to a wider array of data assets. -
27
Katana Graph
Katana Graph
Streamlined distributed computing significantly enhances graph-analytics performance without requiring extensive infrastructure changes. By incorporating a broader variety of data for standardization and visualization on the graph, insights can be significantly strengthened. The combination of advancements in both graph and deep learning results in efficiencies that facilitate prompt insights on the largest graphs in existence. Katana Graph equips Financial Services firms with the tools to tap into the vast possibilities offered by graph analytics and AI at scale, enabling everything from real-time fraud detection to comprehensive customer insights. Leveraging breakthroughs in high-performance parallel computing (HPC), Katana Graph’s intelligent platform evaluates risks and uncovers customer insights from massive data sets using rapid analytics and AI capabilities that surpass those of alternative graph technologies. This transformative approach allows organizations to stay ahead of trends and make data-driven decisions with confidence. -
28
Crux
Crux
Discover the reasons why leading companies are turning to the Crux external data automation platform to enhance their external data integration, transformation, and monitoring without the need for additional personnel. Our cloud-native technology streamlines the processes of ingesting, preparing, observing, and consistently delivering any external dataset. Consequently, this enables you to receive high-quality data precisely where and when you need it, formatted correctly. Utilize features such as automated schema detection, inferred delivery schedules, and lifecycle management to swiftly create pipelines from diverse external data sources. Moreover, boost data discoverability across your organization with a private catalog that links and matches various data products. Additionally, you can enrich, validate, and transform any dataset, allowing for seamless integration with other data sources, which ultimately speeds up your analytics processes. With these capabilities, your organization can fully leverage its data assets to drive informed decision-making and strategic growth. -
29
Sesame Software
Sesame Software
When you have the expertise of an enterprise partner combined with a scalable, easy-to-use data management suite, you can take back control of your data, access it from anywhere, ensure security and compliance, and unlock its power to grow your business. Why Use Sesame Software? Relational Junction builds, populates, and incrementally refreshes your data automatically. Enhance Data Quality - Convert data from multiple sources into a consistent format – leading to more accurate data, which provides the basis for solid decisions. Gain Insights - Automate the update of information into a central location, you can use your in-house BI tools to build useful reports to avoid costly mistakes. Fixed Price - Avoid high consumption costs with yearly fixed prices and multi-year discounts no matter your data volume. -
30
Trino
Trino
FreeTrino is a remarkably fast query engine designed to operate at exceptional speeds. It serves as a high-performance, distributed SQL query engine tailored for big data analytics, enabling users to delve into their vast data environments. Constructed for optimal efficiency, Trino excels in low-latency analytics and is extensively utilized by some of the largest enterprises globally to perform queries on exabyte-scale data lakes and enormous data warehouses. It accommodates a variety of scenarios, including interactive ad-hoc analytics, extensive batch queries spanning several hours, and high-throughput applications that require rapid sub-second query responses. Trino adheres to ANSI SQL standards, making it compatible with popular business intelligence tools like R, Tableau, Power BI, and Superset. Moreover, it allows direct querying of data from various sources such as Hadoop, S3, Cassandra, and MySQL, eliminating the need for cumbersome, time-consuming, and error-prone data copying processes. This capability empowers users to access and analyze data from multiple systems seamlessly within a single query. Such versatility makes Trino a powerful asset in today's data-driven landscape. -
31
Elasticsearch
Elastic
1 RatingElastic is a search company. Elasticsearch, Kibana Beats, Logstash, and Elasticsearch are the founders of the ElasticStack. These SaaS offerings allow data to be used in real-time and at scale for analytics, security, search, logging, security, and search. Elastic has over 100,000 members in 45 countries. Elastic's products have been downloaded more than 400 million times since their initial release. Today, thousands of organizations including Cisco, eBay and Dell, Goldman Sachs and Groupon, HP and Microsoft, as well as Netflix, Uber, Verizon and Yelp use Elastic Stack and Elastic Cloud to power mission critical systems that generate new revenue opportunities and huge cost savings. Elastic is headquartered in Amsterdam, The Netherlands and Mountain View, California. It has more than 1,000 employees in over 35 countries. -
32
Teradata VantageCloud
Teradata
1 RatingVantageCloud by Teradata is a next-gen cloud analytics ecosystem built to unify disparate data sources, deliver real-time AI-powered insights, and drive enterprise innovation with unprecedented efficiency. The platform includes VantageCloud Lake, designed for elastic scalability and GPU-accelerated AI workloads, and VantageCloud Enterprise, which supports robust analytics capabilities across secure hybrid and multi-cloud deployments. It seamlessly integrates with leading cloud providers like AWS, Azure, and Google Cloud, and supports open table formats like Apache Iceberg for greater data flexibility. With built-in support for advanced analytics, workload management, and cross-functional collaboration, VantageCloud provides the agility and power modern enterprises need to accelerate digital transformation and optimize operational outcomes. -
33
Apache Storm
Apache Software Foundation
Apache Storm is a distributed computation system that is both free and open source, designed for real-time data processing. It simplifies the reliable handling of endless data streams, similar to how Hadoop revolutionized batch processing. The platform is user-friendly, compatible with various programming languages, and offers an enjoyable experience for developers. With numerous applications including real-time analytics, online machine learning, continuous computation, distributed RPC, and ETL, Apache Storm proves its versatility. It's remarkably fast, with benchmarks showing it can process over a million tuples per second on a single node. Additionally, it is scalable and fault-tolerant, ensuring that data processing is both reliable and efficient. Setting up and managing Apache Storm is straightforward, and it seamlessly integrates with existing queueing and database technologies. Users can design Apache Storm topologies to consume and process data streams in complex manners, allowing for flexible repartitioning between different stages of computation. For further insights, be sure to explore the detailed tutorial available. -
34
eXtremeDB
McObject
What makes eXtremeDB platform independent? - Hybrid storage of data. Unlike other IMDS databases, eXtremeDB databases are all-in-memory or all-persistent. They can also have a mix between persistent tables and in-memory table. eXtremeDB's Active Replication Fabric™, which is unique to eXtremeDB, offers bidirectional replication and multi-tier replication (e.g. edge-to-gateway-to-gateway-to-cloud), compression to maximize limited bandwidth networks and more. - Row and columnar flexibility for time series data. eXtremeDB supports database designs which combine column-based and row-based layouts in order to maximize the CPU cache speed. - Client/Server and embedded. eXtremeDB provides data management that is fast and flexible wherever you need it. It can be deployed as an embedded system and/or as a clients/server database system. eXtremeDB was designed for use in resource-constrained, mission-critical embedded systems. Found in over 30,000,000 deployments, from routers to satellites and trains to stock market world-wide. -
35
Hadoop
Apache Software Foundation
The Apache Hadoop software library serves as a framework for the distributed processing of extensive data sets across computer clusters, utilizing straightforward programming models. It is built to scale from individual servers to thousands of machines, each providing local computation and storage capabilities. Instead of depending on hardware for high availability, the library is engineered to identify and manage failures within the application layer, ensuring that a highly available service can run on a cluster of machines that may be susceptible to disruptions. Numerous companies and organizations leverage Hadoop for both research initiatives and production environments. Users are invited to join the Hadoop PoweredBy wiki page to showcase their usage. The latest version, Apache Hadoop 3.3.4, introduces several notable improvements compared to the earlier major release, hadoop-3.2, enhancing its overall performance and functionality. This continuous evolution of Hadoop reflects the growing need for efficient data processing solutions in today's data-driven landscape. -
36
Apache Spark
Apache Software Foundation
Apache Spark™ serves as a comprehensive analytics platform designed for large-scale data processing. It delivers exceptional performance for both batch and streaming data by employing an advanced Directed Acyclic Graph (DAG) scheduler, a sophisticated query optimizer, and a robust execution engine. With over 80 high-level operators available, Spark simplifies the development of parallel applications. Additionally, it supports interactive use through various shells including Scala, Python, R, and SQL. Spark supports a rich ecosystem of libraries such as SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming, allowing for seamless integration within a single application. It is compatible with various environments, including Hadoop, Apache Mesos, Kubernetes, and standalone setups, as well as cloud deployments. Furthermore, Spark can connect to a multitude of data sources, enabling access to data stored in systems like HDFS, Alluxio, Apache Cassandra, Apache HBase, and Apache Hive, among many others. This versatility makes Spark an invaluable tool for organizations looking to harness the power of large-scale data analytics. -
37
Kyligence
Kyligence
Kyligence Zen can collect, organize, and analyze your metrics, so you can spend more time taking action. Kyligence Zen, the low-code metrics platform, is the best way to define, collect and analyze your business metrics. It allows users to connect their data sources quickly, define their business metrics in minutes, uncover hidden insights, and share these across their organization. Kyligence Enterprise offers a variety of solutions based on public cloud, on-premises, and private cloud. This allows enterprises of all sizes to simplify multidimensional analyses based on massive data sets according to their needs. Kyligence Enterprise based on Apache Kylin provides sub-second standard SQL queries based upon PB-scale datasets. This simplifies multidimensional data analysis for enterprises, allowing them to quickly discover the business value of massive amounts data and make better business decisions. -
38
Azure HDInsight
Microsoft
Utilize widely-used open-source frameworks like Apache Hadoop, Spark, Hive, and Kafka with Azure HDInsight, a customizable and enterprise-level service designed for open-source analytics. Effortlessly manage vast data sets while leveraging the extensive open-source project ecosystem alongside Azure’s global capabilities. Transitioning your big data workloads to the cloud is straightforward and efficient. You can swiftly deploy open-source projects and clusters without the hassle of hardware installation or infrastructure management. The big data clusters are designed to minimize expenses through features like autoscaling and pricing tiers that let you pay solely for your actual usage. With industry-leading security and compliance validated by over 30 certifications, your data is well protected. Additionally, Azure HDInsight ensures you remain current with the optimized components tailored for technologies such as Hadoop and Spark, providing an efficient and reliable solution for your analytics needs. This service not only streamlines processes but also enhances collaboration across teams. -
39
Hazelcast
Hazelcast
In-Memory Computing Platform. Digital world is different. Microseconds are important. The world's most important organizations rely on us for powering their most sensitive applications at scale. If they meet the current requirement for immediate access, new data-enabled apps can transform your business. Hazelcast solutions can be used to complement any database and deliver results that are much faster than traditional systems of record. Hazelcast's distributed architecture ensures redundancy and continuous cluster up-time, as well as always available data to support the most demanding applications. The capacity grows with demand without compromising performance and availability. The cloud delivers the fastest in-memory data grid and third-generation high speed event processing. -
40
Bizintel360
Bizdata
An AI-driven self-service platform for advanced analytics allows users to connect diverse data sources and create visualizations effortlessly, eliminating the need for programming skills. This cloud-native solution delivers high-quality data and intelligent real-time insights across the organization with a no-code approach. Users can link various data sources, regardless of their formats, enabling the detection of underlying issues. The platform significantly reduces the time taken from sourcing to targeting data, while providing analytics accessible to those without technical expertise. With real-time data updates, users can connect any kind of data source, streaming it to a data lake at defined intervals, and visualize the information through sophisticated interactive dashboards. It combines descriptive, predictive, and prescriptive analytics in one platform, utilizing the capabilities of a search engine alongside advanced visualization techniques. There’s no need for conventional technology to explore data in multiple visualization styles. Users can easily manipulate data through roll-ups, slicing, and dicing, employing various mathematical computations directly within the Bizintel360 visualization environment, thus enhancing their analytical capabilities. This empowers businesses to make data-driven decisions with ease and speed. -
41
BigObject
BigObject
At the core of our innovative approach lies in-data computing, a cutting-edge technology aimed at efficiently processing substantial volumes of data. Our leading product, BigObject, is a prime example of this technology; it is a time series database purposefully created to enable rapid storage and management of vast data sets. Leveraging in-data computing, BigObject has the capability to swiftly and continuously address diverse data streams without interruption. This time series database excels in both high-speed storage and data analysis, showcasing remarkable performance alongside robust complex query functionalities. By transitioning from a traditional relational data structure to a time-series model, it harnesses in-data computing to enhance overall database efficiency. The foundation of our technology is an abstract model, wherein all data resides within an infinite and persistent memory space, facilitating seamless storage and computation. This unique architecture not only optimizes performance but also paves the way for future advancements in data processing capabilities. -
42
GigaSpaces
GigaSpaces
Smart DIH is a data management platform that quickly serves applications with accurate, fresh and complete data, delivering high performance, ultra-low latency, and an always-on digital experience. Smart DIH decouples APIs from SoRs, replicating critical data, and making it available using event-driven architecture. Smart DIH enables drastically shorter development cycles of new digital services, and rapidly scales to serve millions of concurrent users – no matter which IT infrastructure or cloud topologies it relies on. XAP Skyline is a distributed in-memory development platform that delivers transactional consistency, combined with extreme event-based processing and microsecond latency. The platform fuels core business solutions that rely on instantaneous data, including online trading, real-time risk management and data processing for AI and large language models. -
43
QuerySurge
RTTS
8 RatingsQuerySurge is the smart Data Testing solution that automates the data validation and ETL testing of Big Data, Data Warehouses, Business Intelligence Reports and Enterprise Applications with full DevOps functionality for continuous testing. Use Cases - Data Warehouse & ETL Testing - Big Data (Hadoop & NoSQL) Testing - DevOps for Data / Continuous Testing - Data Migration Testing - BI Report Testing - Enterprise Application/ERP Testing Features Supported Technologies - 200+ data stores are supported QuerySurge Projects - multi-project support Data Analytics Dashboard - provides insight into your data Query Wizard - no programming required Design Library - take total control of your custom test desig BI Tester - automated business report testing Scheduling - run now, periodically or at a set time Run Dashboard - analyze test runs in real-time Reports - 100s of reports API - full RESTful API DevOps for Data - integrates into your CI/CD pipeline Test Management Integration QuerySurge will help you: - Continuously detect data issues in the delivery pipeline - Dramatically increase data validation coverage - Leverage analytics to optimize your critical data - Improve your data quality at speed -
44
Vaex
Vaex
At Vaex.io, our mission is to make big data accessible to everyone, regardless of the machine or scale they are using. By reducing development time by 80%, we transform prototypes directly into solutions. Our platform allows for the creation of automated pipelines for any model, significantly empowering data scientists in their work. With our technology, any standard laptop can function as a powerful big data tool, eliminating the need for clusters or specialized engineers. We deliver dependable and swift data-driven solutions that stand out in the market. Our cutting-edge technology enables the rapid building and deployment of machine learning models, outpacing competitors. We also facilitate the transformation of your data scientists into proficient big data engineers through extensive employee training, ensuring that you maximize the benefits of our solutions. Our system utilizes memory mapping, an advanced expression framework, and efficient out-of-core algorithms, enabling users to visualize and analyze extensive datasets while constructing machine learning models on a single machine. This holistic approach not only enhances productivity but also fosters innovation within your organization. -
45
doolytic
doolytic
Doolytic is at the forefront of big data discovery, integrating data exploration, advanced analytics, and the vast potential of big data. The company is empowering skilled BI users to participate in a transformative movement toward self-service big data exploration, uncovering the inherent data scientist within everyone. As an enterprise software solution, doolytic offers native discovery capabilities specifically designed for big data environments. Built on cutting-edge, scalable, open-source technologies, doolytic ensures lightning-fast performance, managing billions of records and petabytes of information seamlessly. It handles structured, unstructured, and real-time data from diverse sources, providing sophisticated query capabilities tailored for expert users while integrating with R for advanced analytics and predictive modeling. Users can effortlessly search, analyze, and visualize data from any format and source in real-time, thanks to the flexible architecture of Elastic. By harnessing the capabilities of Hadoop data lakes, doolytic eliminates latency and concurrency challenges, addressing common BI issues and facilitating big data discovery without cumbersome or inefficient alternatives. With doolytic, organizations can truly unlock the full potential of their data assets.