Best Anyscale Alternatives in 2025

Find the top alternatives to Anyscale currently available. Compare ratings, reviews, pricing, and features of Anyscale alternatives in 2025. Slashdot lists the best Anyscale alternatives on the market that offer competing products that are similar to Anyscale. Sort through Anyscale alternatives below to make the best choice for your needs

  • 1
    Vertex AI Reviews
    See Software
    Learn More
    Compare Both
    Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
  • 2
    OORT DataHub Reviews
    Top Pick
    Top Pick See Software
    Learn More
    Compare Both
    Our decentralized platform streamlines AI data collection and labeling through a worldwide contributor network. By combining crowdsourcing with blockchain technology, we deliver high-quality, traceable datasets. Platform Highlights: Worldwide Collection: Tap into global contributors for comprehensive data gathering Blockchain Security: Every contribution tracked and verified on-chain Quality Focus: Expert validation ensures exceptional data standards Platform Benefits: Rapid scaling of data collection Complete data providence tracking Validated datasets ready for AI use Cost-efficient global operations Flexible contributor network How It Works: Define Your Needs: Create your data collection task Community Activation: Global contributors notified and start gathering data Quality Control: Human verification layer validates all contributions Sample Review: Get dataset sample for approval Full Delivery: Complete dataset delivered once approved
  • 3
    RunPod Reviews
    See Software
    Learn More
    Compare Both
    RunPod provides a cloud infrastructure that enables seamless deployment and scaling of AI workloads with GPU-powered pods. By offering access to a wide array of NVIDIA GPUs, such as the A100 and H100, RunPod supports training and deploying machine learning models with minimal latency and high performance. The platform emphasizes ease of use, allowing users to spin up pods in seconds and scale them dynamically to meet demand. With features like autoscaling, real-time analytics, and serverless scaling, RunPod is an ideal solution for startups, academic institutions, and enterprises seeking a flexible, powerful, and affordable platform for AI development and inference.
  • 4
    Mistral AI Reviews
    Mistral AI stands out as an innovative startup in the realm of artificial intelligence, focusing on open-source generative solutions. The company provides a diverse array of customizable, enterprise-level AI offerings that can be implemented on various platforms, such as on-premises, cloud, edge, and devices. Among its key products are "Le Chat," a multilingual AI assistant aimed at boosting productivity in both personal and professional settings, and "La Plateforme," a platform for developers that facilitates the creation and deployment of AI-driven applications. With a strong commitment to transparency and cutting-edge innovation, Mistral AI has established itself as a prominent independent AI laboratory, actively contributing to the advancement of open-source AI and influencing policy discussions. Their dedication to fostering an open AI ecosystem underscores their role as a thought leader in the industry.
  • 5
    Snowflake Reviews
    Snowflake offers a unified AI Data Cloud platform that transforms how businesses store, analyze, and leverage data by eliminating silos and simplifying architectures. It features interoperable storage that enables seamless access to diverse datasets at massive scale, along with an elastic compute engine that delivers leading performance for a wide range of workloads. Snowflake Cortex AI integrates secure access to cutting-edge large language models and AI services, empowering enterprises to accelerate AI-driven insights. The platform’s cloud services automate and streamline resource management, reducing complexity and cost. Snowflake also offers Snowgrid, which securely connects data and applications across multiple regions and cloud providers for a consistent experience. Their Horizon Catalog provides built-in governance to manage security, privacy, compliance, and access control. Snowflake Marketplace connects users to critical business data and apps to foster collaboration within the AI Data Cloud network. Serving over 11,000 customers worldwide, Snowflake supports industries from healthcare and finance to retail and telecom.
  • 6
    JFrog Artifactory Reviews
    The Industry Standard Universal Binary Repository Management Manager. All major package types supported (over 27 and growing), including Maven, npm. Python, NuGet. Gradle. Go and Helm, Kubernetes, Docker, as well as integration to leading CI servers or DevOps tools you already use. Additional functionalities include: - High availability that scales to infinity through active/active clustering in your DevOps environment. This scales as your business grows - On-Prem or Cloud, Hybrid, Multi-Cloud Solution - De Facto Kubernetes Registry for managing application packages, operating systems component dependencies, open sources libraries, Docker containers and Helm charts. Full visibility of all dependencies. Compatible with a growing number of Kubernetes cluster provider.
  • 7
    Amazon SageMaker Reviews
    Amazon SageMaker is a comprehensive machine learning platform that integrates powerful tools for model building, training, and deployment in one cohesive environment. It combines data processing, AI model development, and collaboration features, allowing teams to streamline the development of custom AI applications. With SageMaker, users can easily access data stored across Amazon S3 data lakes and Amazon Redshift data warehouses, facilitating faster insights and AI model development. It also supports generative AI use cases, enabling users to develop and scale applications with cutting-edge AI technologies. The platform’s governance and security features ensure that data and models are handled with precision and compliance throughout the entire ML lifecycle. Furthermore, SageMaker provides a unified development studio for real-time collaboration, speeding up data discovery and model deployment.
  • 8
    Together AI Reviews

    Together AI

    Together AI

    $0.0001 per 1k tokens
    Be it prompt engineering, fine-tuning, or extensive training, we are fully equipped to fulfill your business needs. Seamlessly incorporate your newly developed model into your application with the Together Inference API, which offers unparalleled speed and flexible scaling capabilities. Together AI is designed to adapt to your evolving requirements as your business expands. You can explore the training processes of various models and the datasets used to enhance their accuracy while reducing potential risks. It's important to note that the ownership of the fine-tuned model lies with you, not your cloud service provider, allowing for easy transitions if you decide to switch providers for any reason, such as cost adjustments. Furthermore, you can ensure complete data privacy by opting to store your data either locally or within our secure cloud environment. The flexibility and control we offer empower you to make decisions that best suit your business.
  • 9
    MosaicML Reviews
    Easily train and deploy large-scale AI models with just a single command by pointing to your S3 bucket—then let us take care of everything else, including orchestration, efficiency, node failures, and infrastructure management. The process is straightforward and scalable, allowing you to utilize MosaicML to train and serve large AI models using your own data within your secure environment. Stay ahead of the curve with our up-to-date recipes, techniques, and foundation models, all developed and thoroughly tested by our dedicated research team. With only a few simple steps, you can deploy your models within your private cloud, ensuring that your data and models remain behind your own firewalls. You can initiate your project in one cloud provider and seamlessly transition to another without any disruptions. Gain ownership of the model trained on your data while being able to introspect and clarify the decisions made by the model. Customize content and data filtering to align with your business requirements, and enjoy effortless integration with your existing data pipelines, experiment trackers, and other essential tools. Our solution is designed to be fully interoperable, cloud-agnostic, and validated for enterprise use, ensuring reliability and flexibility for your organization. Additionally, the ease of use and the power of our platform allow teams to focus more on innovation rather than infrastructure management.
  • 10
    CentML Reviews
    CentML enhances the performance of Machine Learning tasks by fine-tuning models for better use of hardware accelerators such as GPUs and TPUs, all while maintaining model accuracy. Our innovative solutions significantly improve both the speed of training and inference, reduce computation expenses, elevate the profit margins of your AI-driven products, and enhance the efficiency of your engineering team. The quality of software directly reflects the expertise of its creators. Our team comprises top-tier researchers and engineers specializing in machine learning and systems. Concentrate on developing your AI solutions while our technology ensures optimal efficiency and cost-effectiveness for your operations. By leveraging our expertise, you can unlock the full potential of your AI initiatives without compromising on performance.
  • 11
    Parasail Reviews

    Parasail

    Parasail

    $0.80 per million tokens
    Parasail is a network designed for deploying AI that offers scalable and cost-effective access to high-performance GPUs tailored for various AI tasks. It features three main services: serverless endpoints for real-time inference, dedicated instances for private model deployment, and batch processing for extensive task management. Users can either deploy open-source models like DeepSeek R1, LLaMA, and Qwen, or utilize their own models, with the platform’s permutation engine optimally aligning workloads with hardware, which includes NVIDIA’s H100, H200, A100, and 4090 GPUs. The emphasis on swift deployment allows users to scale from a single GPU to large clusters in just minutes, providing substantial cost savings, with claims of being up to 30 times more affordable than traditional cloud services. Furthermore, Parasail boasts day-zero availability for new models and features a self-service interface that avoids long-term contracts and vendor lock-in, enhancing user flexibility and control. This combination of features makes Parasail an attractive choice for those looking to leverage high-performance AI capabilities without the usual constraints of cloud computing.
  • 12
    Simplismart Reviews
    Enhance and launch AI models using Simplismart's ultra-fast inference engine. Seamlessly connect with major cloud platforms like AWS, Azure, GCP, and others for straightforward, scalable, and budget-friendly deployment options. Easily import open-source models from widely-used online repositories or utilize your personalized custom model. You can opt to utilize your own cloud resources or allow Simplismart to manage your model hosting. With Simplismart, you can go beyond just deploying AI models; you have the capability to train, deploy, and monitor any machine learning model, achieving improved inference speeds while minimizing costs. Import any dataset for quick fine-tuning of both open-source and custom models. Efficiently conduct multiple training experiments in parallel to enhance your workflow, and deploy any model on our endpoints or within your own VPC or on-premises to experience superior performance at reduced costs. The process of streamlined and user-friendly deployment is now achievable. You can also track GPU usage and monitor all your node clusters from a single dashboard, enabling you to identify any resource limitations or model inefficiencies promptly. This comprehensive approach to AI model management ensures that you can maximize your operational efficiency and effectiveness.
  • 13
    VESSL AI Reviews

    VESSL AI

    VESSL AI

    $100 + compute/month
    Accelerate the building, training, and deployment of models at scale through a fully managed infrastructure that provides essential tools and streamlined workflows. Launch personalized AI and LLMs on any infrastructure in mere seconds, effortlessly scaling inference as required. Tackle your most intensive tasks with batch job scheduling, ensuring you only pay for what you use on a per-second basis. Reduce costs effectively by utilizing GPU resources, spot instances, and a built-in automatic failover mechanism. Simplify complex infrastructure configurations by deploying with just a single command using YAML. Adjust to demand by automatically increasing worker capacity during peak traffic periods and reducing it to zero when not in use. Release advanced models via persistent endpoints within a serverless architecture, maximizing resource efficiency. Keep a close eye on system performance and inference metrics in real-time, tracking aspects like worker numbers, GPU usage, latency, and throughput. Additionally, carry out A/B testing with ease by distributing traffic across various models for thorough evaluation, ensuring your deployments are continually optimized for performance.
  • 14
    Azure OpenAI Service Reviews

    Azure OpenAI Service

    Microsoft

    $0.0004 per 1000 tokens
    Utilize sophisticated coding and language models across a diverse range of applications. Harness the power of expansive generative AI models that possess an intricate grasp of both language and code, paving the way for enhanced reasoning and comprehension skills essential for developing innovative applications. These advanced models can be applied to multiple scenarios, including writing support, automatic code creation, and data reasoning. Moreover, ensure responsible AI practices by implementing measures to detect and mitigate potential misuse, all while benefiting from enterprise-level security features offered by Azure. With access to generative models pretrained on vast datasets comprising trillions of words, you can explore new possibilities in language processing, code analysis, reasoning, inferencing, and comprehension. Further personalize these generative models by using labeled datasets tailored to your unique needs through an easy-to-use REST API. Additionally, you can optimize your model's performance by fine-tuning hyperparameters for improved output accuracy. The few-shot learning functionality allows you to provide sample inputs to the API, resulting in more pertinent and context-aware outcomes. This flexibility enhances your ability to meet specific application demands effectively.
  • 15
    Lambda GPU Cloud Reviews
    Train advanced models in AI, machine learning, and deep learning effortlessly. With just a few clicks, you can scale your computing resources from a single machine to a complete fleet of virtual machines. Initiate or expand your deep learning endeavors using Lambda Cloud, which allows you to quickly get started, reduce computing expenses, and seamlessly scale up to hundreds of GPUs when needed. Each virtual machine is equipped with the latest version of Lambda Stack, featuring prominent deep learning frameworks and CUDA® drivers. In mere seconds, you can access a dedicated Jupyter Notebook development environment for every machine directly through the cloud dashboard. For immediate access, utilize the Web Terminal within the dashboard or connect via SSH using your provided SSH keys. By creating scalable compute infrastructure tailored specifically for deep learning researchers, Lambda is able to offer substantial cost savings. Experience the advantages of cloud computing's flexibility without incurring exorbitant on-demand fees, even as your workloads grow significantly. This means you can focus on your research and projects without being hindered by financial constraints.
  • 16
    Movestax Reviews
    Movestax is a platform that focuses on serverless functions for builders. Movestax offers a range of services, including serverless functions, databases and authentication. Movestax has the services that you need to grow, whether you're starting out or scaling quickly. Instantly deploy frontend and backend apps with integrated CI/CD. PostgreSQL and MySQL are fully managed, scalable, and just work. Create sophisticated workflows and integrate them directly into your cloud infrastructure. Run serverless functions to automate tasks without managing servers. Movestax's integrated authentication system simplifies user management. Accelerate development by leveraging pre-built APIs. Object storage is a secure, scalable way to store and retrieve files.
  • 17
    SambaNova Reviews
    SambaNova is the leading purpose-built AI system for generative and agentic AI implementations, from chips to models, that gives enterprises full control over their model and private data. We take the best models, optimize them for fast tokens and higher batch sizes, the largest inputs and enable customizations to deliver value with simplicity. The full suite includes the SambaNova DataScale system, the SambaStudio software, and the innovative SambaNova Composition of Experts (CoE) model architecture. These components combine into a powerful platform that delivers unparalleled performance, ease of use, accuracy, data privacy, and the ability to power every use case across the world's largest organizations. At the heart of SambaNova innovation is the fourth generation SN40L Reconfigurable Dataflow Unit (RDU). Purpose built for AI workloads, the SN40L RDU takes advantage of a dataflow architecture and a three-tiered memory design. The dataflow architecture eliminates the challenges that GPUs have with high performance inference. The three tiers of memory enable the platform to run hundreds of models on a single node and to switch between them in microseconds. We give our customers the optionality to experience through the cloud or on-premise.
  • 18
    Google Cloud AI Infrastructure Reviews
    Businesses now have numerous options to efficiently train their deep learning and machine learning models without breaking the bank. AI accelerators cater to various scenarios, providing solutions that range from economical inference to robust training capabilities. Getting started is straightforward, thanks to an array of services designed for both development and deployment purposes. Custom-built ASICs known as Tensor Processing Units (TPUs) are specifically designed to train and run deep neural networks with enhanced efficiency. With these tools, organizations can develop and implement more powerful and precise models at a lower cost, achieving faster speeds and greater scalability. A diverse selection of NVIDIA GPUs is available to facilitate cost-effective inference or to enhance training capabilities, whether by scaling up or by expanding out. Furthermore, by utilizing RAPIDS and Spark alongside GPUs, users can execute deep learning tasks with remarkable efficiency. Google Cloud allows users to run GPU workloads while benefiting from top-tier storage, networking, and data analytics technologies that improve overall performance. Additionally, when initiating a VM instance on Compute Engine, users can leverage CPU platforms, which offer a variety of Intel and AMD processors to suit different computational needs. This comprehensive approach empowers businesses to harness the full potential of AI while managing costs effectively.
  • 19
    Cerebras Reviews
    Our team has developed the quickest AI accelerator, utilizing the most extensive processor available in the market, and have ensured its user-friendliness. With Cerebras, you can experience rapid training speeds, extremely low latency for inference, and an unprecedented time-to-solution that empowers you to reach your most daring AI objectives. Just how bold can these objectives be? We not only make it feasible but also convenient to train language models with billions or even trillions of parameters continuously, achieving nearly flawless scaling from a single CS-2 system to expansive Cerebras Wafer-Scale Clusters like Andromeda, which stands as one of the largest AI supercomputers ever constructed. This capability allows researchers and developers to push the boundaries of AI innovation like never before.
  • 20
    Nebius Reviews
    A robust platform optimized for training is equipped with NVIDIA® H100 Tensor Core GPUs, offering competitive pricing and personalized support. Designed to handle extensive machine learning workloads, it allows for efficient multihost training across thousands of H100 GPUs interconnected via the latest InfiniBand network, achieving speeds of up to 3.2Tb/s per host. Users benefit from significant cost savings, with at least a 50% reduction in GPU compute expenses compared to leading public cloud services*, and additional savings are available through GPU reservations and bulk purchases. To facilitate a smooth transition, we promise dedicated engineering support that guarantees effective platform integration while optimizing your infrastructure and deploying Kubernetes. Our fully managed Kubernetes service streamlines the deployment, scaling, and management of machine learning frameworks, enabling multi-node GPU training with ease. Additionally, our Marketplace features a variety of machine learning libraries, applications, frameworks, and tools designed to enhance your model training experience. New users can take advantage of a complimentary one-month trial period, ensuring they can explore the platform's capabilities effortlessly. This combination of performance and support makes it an ideal choice for organizations looking to elevate their machine learning initiatives.
  • 21
    Deep Infra Reviews

    Deep Infra

    Deep Infra

    $0.70 per 1M input tokens
    Experience a robust, self-service machine learning platform that enables you to transform models into scalable APIs with just a few clicks. Create an account with Deep Infra through GitHub or log in using your GitHub credentials. Select from a vast array of popular ML models available at your fingertips. Access your model effortlessly via a straightforward REST API. Our serverless GPUs allow for quicker and more cost-effective production deployments than building your own infrastructure from scratch. We offer various pricing models tailored to the specific model utilized, with some language models available on a per-token basis. Most other models are charged based on the duration of inference execution, ensuring you only pay for what you consume. There are no long-term commitments or upfront fees, allowing for seamless scaling based on your evolving business requirements. All models leverage cutting-edge A100 GPUs, specifically optimized for high inference performance and minimal latency. Our system dynamically adjusts the model's capacity to meet your demands, ensuring optimal resource utilization at all times. This flexibility supports businesses in navigating their growth trajectories with ease.
  • 22
    Hugging Face Reviews

    Hugging Face

    Hugging Face

    $9 per month
    Hugging Face is an AI community platform that provides state-of-the-art machine learning models, datasets, and APIs to help developers build intelligent applications. The platform’s extensive repository includes models for text generation, image recognition, and other advanced machine learning tasks. Hugging Face’s open-source ecosystem, with tools like Transformers and Tokenizers, empowers both individuals and enterprises to build, train, and deploy machine learning solutions at scale. It offers integration with major frameworks like TensorFlow and PyTorch for streamlined model development.
  • 23
    Spot Ocean Reviews
    Spot Ocean empowers users to harness the advantages of Kubernetes while alleviating concerns about infrastructure management, all while offering enhanced cluster visibility and significantly lower expenses. A crucial inquiry is how to effectively utilize containers without incurring the operational burdens tied to overseeing the underlying virtual machines, while simultaneously capitalizing on the financial benefits of Spot Instances and multi-cloud strategies. To address this challenge, Spot Ocean is designed to operate within a "Serverless" framework, effectively managing containers by providing an abstraction layer over virtual machines, which facilitates the deployment of Kubernetes clusters without the need for VM management. Moreover, Ocean leverages various compute purchasing strategies, including Reserved and Spot instance pricing, and seamlessly transitions to On-Demand instances as required, achieving an impressive 80% reduction in infrastructure expenditures. As a Serverless Compute Engine, Spot Ocean streamlines the processes of provisioning, auto-scaling, and managing worker nodes within Kubernetes clusters, allowing developers to focus on building applications rather than managing infrastructure. This innovative approach not only enhances operational efficiency but also enables organizations to optimize their cloud spending while maintaining robust performance and scalability.
  • 24
    Substrate Reviews

    Substrate

    Substrate

    $30 per month
    Substrate serves as the foundation for agentic AI, featuring sophisticated abstractions and high-performance elements, including optimized models, a vector database, a code interpreter, and a model router. It stands out as the sole compute engine crafted specifically to handle complex multi-step AI tasks. By merely describing your task and linking components, Substrate can execute it at remarkable speed. Your workload is assessed as a directed acyclic graph, which is then optimized; for instance, it consolidates nodes that are suitable for batch processing. The Substrate inference engine efficiently organizes your workflow graph, employing enhanced parallelism to simplify the process of integrating various inference APIs. Forget about asynchronous programming—just connect the nodes and allow Substrate to handle the parallelization of your workload seamlessly. Our robust infrastructure ensures that your entire workload operates within the same cluster, often utilizing a single machine, thereby eliminating delays caused by unnecessary data transfers and cross-region HTTP requests. This streamlined approach not only enhances efficiency but also significantly accelerates task execution times.
  • 25
    Fireworks AI Reviews

    Fireworks AI

    Fireworks AI

    $0.20 per 1M tokens
    Fireworks collaborates with top generative AI researchers to provide the most efficient models at unparalleled speeds. It has been independently assessed and recognized as the fastest among all inference providers. You can leverage powerful models specifically selected by Fireworks, as well as our specialized multi-modal and function-calling models developed in-house. As the second most utilized open-source model provider, Fireworks impressively generates over a million images each day. Our API, which is compatible with OpenAI, simplifies the process of starting your projects with Fireworks. We ensure dedicated deployments for your models, guaranteeing both uptime and swift performance. Fireworks takes pride in its compliance with HIPAA and SOC2 standards while also providing secure VPC and VPN connectivity. You can meet your requirements for data privacy, as you retain ownership of your data and models. With Fireworks, serverless models are seamlessly hosted, eliminating the need for hardware configuration or model deployment. In addition to its rapid performance, Fireworks.ai is committed to enhancing your experience in serving generative AI models effectively. Ultimately, Fireworks stands out as a reliable partner for innovative AI solutions.
  • 26
    FriendliAI Reviews

    FriendliAI

    FriendliAI

    $5.9 per hour
    FriendliAI serves as an advanced generative AI infrastructure platform that delivers rapid, efficient, and dependable inference solutions tailored for production settings. The platform is equipped with an array of tools and services aimed at refining the deployment and operation of large language models (LLMs) alongside various generative AI tasks on a large scale. Among its key features is Friendli Endpoints, which empowers users to create and implement custom generative AI models, thereby reducing GPU expenses and hastening AI inference processes. Additionally, it facilitates smooth integration with well-known open-source models available on the Hugging Face Hub, ensuring exceptionally fast and high-performance inference capabilities. FriendliAI incorporates state-of-the-art technologies, including Iteration Batching, the Friendli DNN Library, Friendli TCache, and Native Quantization, all of which lead to impressive cost reductions (ranging from 50% to 90%), a significant decrease in GPU demands (up to 6 times fewer GPUs), enhanced throughput (up to 10.7 times), and a marked decrease in latency (up to 6.2 times). With its innovative approach, FriendliAI positions itself as a key player in the evolving landscape of generative AI solutions.
  • 27
    kluster.ai Reviews

    kluster.ai

    kluster.ai

    $0.15per input
    Kluster.ai is an AI cloud platform tailored for developers, enabling quick deployment, scaling, and fine-tuning of large language models (LLMs) with remarkable efficiency. Crafted by developers with a focus on developer needs, it features Adaptive Inference, a versatile service that dynamically adjusts to varying workload demands, guaranteeing optimal processing performance and reliable turnaround times. This Adaptive Inference service includes three unique processing modes: real-time inference for tasks requiring minimal latency, asynchronous inference for budget-friendly management of tasks with flexible timing, and batch inference for the streamlined processing of large volumes of data. It accommodates an array of innovative multimodal models for various applications such as chat, vision, and coding, featuring models like Meta's Llama 4 Maverick and Scout, Qwen3-235B-A22B, DeepSeek-R1, and Gemma 3. Additionally, Kluster.ai provides an OpenAI-compatible API, simplifying the integration of these advanced models into developers' applications, and thereby enhancing their overall capabilities. This platform ultimately empowers developers to harness the full potential of AI technologies in their projects.
  • 28
    Stacktape Reviews
    Stacktape is a user-friendly cloud framework that eliminates the need for DevOps, making it both robust and accessible. It enables users to develop, deploy, and manage applications seamlessly on AWS, requiring 98% less configuration and no prior DevOps or cloud expertise. Unlike other platforms, Stacktape allows for the deployment of both serverless applications based on AWS Lambda and traditional container-based applications. It boasts support for over 20 infrastructure components, including SQL databases, load balancers, MongoDB Atlas clusters, batch jobs, Kafka topics, Redis clusters, and more. In addition to managing infrastructure, Stacktape simplifies source code packaging, deployment processes, and facilitates both local and remote development. The framework is complemented by a Visual Studio Code extension and a graphical user interface for local development, enhancing user experience. As an Infrastructure as Code (IaaC) solution, Stacktape significantly reduces configuration complexity; for instance, a typical production-grade REST API requires only around 30 lines of configuration, contrasting sharply with the 600-800 lines needed for CloudFormation or Terraform. Furthermore, deploying applications can be accomplished with a single command, whether from a local machine or through a CI/CD pipeline, making the process as streamlined as possible. This ease of use allows developers to focus more on building features rather than managing infrastructure intricacies.
  • 29
    Hyperbolic Reviews
    Hyperbolic is an accessible AI cloud platform focused on making artificial intelligence available to all by offering cost-effective and scalable GPU resources along with AI services. By harnessing worldwide computing capabilities, Hyperbolic empowers businesses, researchers, data centers, and individuals to utilize and monetize GPU resources at significantly lower prices compared to conventional cloud service providers. Their goal is to cultivate a cooperative AI environment that promotes innovation free from the burdens of exorbitant computational costs. This approach not only enhances accessibility but also encourages a diverse range of participants to contribute to the advancement of AI technologies.
  • 30
    Griptape Reviews
    Build, deploy and scale AI applications from end-to-end in the cloud. Griptape provides developers with everything they need from the development framework up to the execution runtime to build, deploy and scale retrieval driven AI-powered applications. Griptape, a Python framework that is modular and flexible, allows you to build AI-powered apps that securely connect with your enterprise data. It allows developers to maintain control and flexibility throughout the development process. Griptape Cloud hosts your AI structures whether they were built with Griptape or another framework. You can also call directly to LLMs. To get started, simply point your GitHub repository. You can run your hosted code using a basic API layer, from wherever you are. This will allow you to offload the expensive tasks associated with AI development. Automatically scale your workload to meet your needs.
  • 31
    Intel Tiber AI Studio Reviews
    Intel® Tiber™ AI Studio serves as an all-encompassing machine learning operating system designed to streamline and unify the development of artificial intelligence. This robust platform accommodates a diverse array of AI workloads and features a hybrid multi-cloud infrastructure that enhances the speed of ML pipeline creation, model training, and deployment processes. By incorporating native Kubernetes orchestration and a meta-scheduler, Tiber™ AI Studio delivers unparalleled flexibility for managing both on-premises and cloud resources. Furthermore, its scalable MLOps framework empowers data scientists to seamlessly experiment, collaborate, and automate their machine learning workflows, all while promoting efficient and cost-effective resource utilization. This innovative approach not only boosts productivity but also fosters a collaborative environment for teams working on AI projects.
  • 32
    DataRobot Reviews
    AI Cloud represents an innovative strategy designed to meet the current demands, challenges, and potential of artificial intelligence. This comprehensive system acts as a single source of truth, expediting the process of bringing AI solutions into production for organizations of all sizes. Users benefit from a collaborative environment tailored for ongoing enhancements throughout the entire AI lifecycle. The AI Catalog simplifies the process of discovering, sharing, tagging, and reusing data, which accelerates deployment and fosters teamwork. This catalog ensures that users can easily access relevant data to resolve business issues while maintaining high standards of security, compliance, and consistency. If your database is subject to a network policy restricting access to specific IP addresses, please reach out to Support for assistance in obtaining a list of IPs that should be added to your network policy for whitelisting, ensuring that your operations run smoothly. Additionally, leveraging AI Cloud can significantly improve your organization’s ability to innovate and adapt in a rapidly evolving technological landscape.
  • 33
    Klu Reviews
    Klu.ai, a Generative AI Platform, simplifies the design, deployment, and optimization of AI applications. Klu integrates your Large Language Models and incorporates data from diverse sources to give your applications unique context. Klu accelerates the building of applications using language models such as Anthropic Claude (Azure OpenAI), GPT-4 (Google's GPT-4), and over 15 others. It allows rapid prompt/model experiments, data collection and user feedback and model fine tuning while cost-effectively optimising performance. Ship prompt generation, chat experiences and workflows in minutes. Klu offers SDKs for all capabilities and an API-first strategy to enable developer productivity. Klu automatically provides abstractions to common LLM/GenAI usage cases, such as: LLM connectors and vector storage, prompt templates, observability and evaluation/testing tools.
  • 34
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform empowers every member of your organization to leverage data and artificial intelligence effectively. Constructed on a lakehouse architecture, it establishes a cohesive and transparent foundation for all aspects of data management and governance, enhanced by a Data Intelligence Engine that recognizes the distinct characteristics of your data. Companies that excel across various sectors will be those that harness the power of data and AI. Covering everything from ETL processes to data warehousing and generative AI, Databricks facilitates the streamlining and acceleration of your data and AI objectives. By merging generative AI with the integrative advantages of a lakehouse, Databricks fuels a Data Intelligence Engine that comprehends the specific semantics of your data. This functionality enables the platform to optimize performance automatically and manage infrastructure in a manner tailored to your organization's needs. Additionally, the Data Intelligence Engine is designed to grasp the unique language of your enterprise, making the search and exploration of new data as straightforward as posing a question to a colleague, thus fostering collaboration and efficiency. Ultimately, this innovative approach transforms the way organizations interact with their data, driving better decision-making and insights.
  • 35
    mogenius Reviews

    mogenius

    mogenius

    $350 per month
    Mogenius offers an all-in-one platform that integrates visibility, observability, and automation for effective Kubernetes management. By connecting and visualizing your Kubernetes clusters and workloads, it ensures that the entire team has access to crucial insights. You can easily pinpoint misconfigurations within your workloads and take corrective measures directly through the mogenius interface. The platform streamlines Kubernetes operations with features like service catalogs, enabling developer self-service, and creating ephemeral environments. This self-service capability simplifies the deployment process for developers, allowing them to work more efficiently. Additionally, mogenius helps optimize resource allocation and prevents configuration drift through the use of standardized, automated workflows. By eliminating redundant tasks and promoting the reuse of resources with service catalogs, your team can enhance productivity. Gain complete visibility into your Kubernetes infrastructure and deploy a cloud-agnostic Kubernetes operator for a holistic view of your clusters and workloads. Furthermore, developers can quickly establish local and ephemeral testing environments that replicate the production setup in just a few clicks, ensuring a seamless development experience. Ultimately, mogenius empowers teams to manage their Kubernetes environments with greater ease and efficiency.
  • 36
    Cloudify Reviews
    All public and private environments can be managed from one platform with a single CI/CD plug-in that connects to ALL automation toolchains. This plugin supports Jenkins, Kubernetes and Terraform as well as Cloud Formation, Azure ARm, Cloud Formation, Cloud Formation, and many other automation toolchains. No installation, no downloading... and free on us for the first thirty days. Integration with infrastructure orchestration domains such as AWS Cloud formation and Azure ARM, Ansible, Terraform, and Terraform. Service Composition Domain-Specific Language - This simplifies the relationship between services and handles cascading workflows. Shared resources, distributed life-cycle management, and more. Orchestration of cloud native Kubernetes service across multiple clusters using OpenShift and KubeSpray. A blueprint is available to automate the configuration and setup of clusters. Integration with Jenkins and other CI/CD platforms. This integration provides a 'one stop-shop' for all orchestration domains that can be integrated to your CI/CD pipeline.
  • 37
    GMI Cloud Reviews

    GMI Cloud

    GMI Cloud

    $2.50 per hour
    Create your generative AI solutions in just a few minutes with GMI GPU Cloud. GMI Cloud goes beyond simple bare metal offerings by enabling you to train, fine-tune, and run cutting-edge models seamlessly. Our clusters come fully prepared with scalable GPU containers and widely-used ML frameworks, allowing for immediate access to the most advanced GPUs tailored for your AI tasks. Whether you seek flexible on-demand GPUs or dedicated private cloud setups, we have the perfect solution for you. Optimize your GPU utility with our ready-to-use Kubernetes software, which simplifies the process of allocating, deploying, and monitoring GPUs or nodes through sophisticated orchestration tools. You can customize and deploy models tailored to your data, enabling rapid development of AI applications. GMI Cloud empowers you to deploy any GPU workload swiftly and efficiently, allowing you to concentrate on executing ML models instead of handling infrastructure concerns. Launching pre-configured environments saves you valuable time by eliminating the need to build container images, install software, download models, and configure environment variables manually. Alternatively, you can utilize your own Docker image to cater to specific requirements, ensuring flexibility in your development process. With GMI Cloud, you'll find that the path to innovative AI applications is smoother and faster than ever before.
  • 38
    Quali CloudShell Reviews
    All the best practices, none of the bottlenecks Automate multi-cloud provisioning, deployment, policy-driven compliance, and cloud cost management.
  • 39
    Amazon EC2 Trn2 Instances Reviews
    Amazon EC2 Trn2 instances, equipped with AWS Trainium2 chips, are specifically designed to deliver exceptional performance in the training of generative AI models, such as large language and diffusion models. Users can experience cost savings of up to 50% in training expenses compared to other Amazon EC2 instances. These Trn2 instances can accommodate as many as 16 Trainium2 accelerators, boasting an impressive compute power of up to 3 petaflops using FP16/BF16 and 512 GB of high-bandwidth memory. For enhanced data and model parallelism, they are built with NeuronLink, a high-speed, nonblocking interconnect, and offer a substantial network bandwidth of up to 1600 Gbps via the second-generation Elastic Fabric Adapter (EFAv2). Trn2 instances are part of EC2 UltraClusters, which allow for scaling up to 30,000 interconnected Trainium2 chips within a nonblocking petabit-scale network, achieving a remarkable 6 exaflops of compute capability. Additionally, the AWS Neuron SDK provides seamless integration with widely used machine learning frameworks, including PyTorch and TensorFlow, making these instances a powerful choice for developers and researchers alike. This combination of cutting-edge technology and cost efficiency positions Trn2 instances as a leading option in the realm of high-performance deep learning.
  • 40
    F5 Distributed Cloud Platform Reviews
    The F5 Distributed Cloud Platform offers enhanced features, robust security measures, and streamlined operations superior to those provided by native cloud services. This platform is specifically designed to cater to distributed applications operating in multi-cloud, on-premises, and edge settings. As software applications transition into microservices and increasingly rely on APIs, the emergence of complex and highly distributed architectures brings about challenges, escalated costs, and heightened risks. To effectively deliver applications, it is necessary to deploy and manage various appliances, software, and connectivity services. Conventional CDNs and hub-and-spoke networks fall short when it comes to supporting immersive or large-scale SaaS applications. With differing APIs, policies, and levels of observability, there is a pressing need for significant investments in automation. Applications that are distributed across various environments often face unequal protection levels. Furthermore, achieving alignment among DevOps, NetOps, and SecOps during service provisioning and security poses significant challenges, particularly when relying on ticket-based workflows, which can hinder efficiency and responsiveness. Addressing these complexities is crucial for optimizing the management of distributed applications.
  • 41
    Quali Torque Reviews
    Cloud automation, cost control and security can all be seamlessly connected to your platform. Users can also access the power of environments through self-service. Your teams will have the infrastructure and resources they need quickly and easily. Developers have instant access to the applications environments they need via their CI/CD tools and GUI. Developers can build in a uniform, standard way without adding unnecessary friction. Reusable building blocks make delivering the application-aware resources developers need easier. Reduce uncertainty, avoid over-spending, tie cloud costs back into your business. Torque is a SaaS platform that automates infrastructure in complex, application-centric environments using cloud technologies such as AWS, Azure and Kubernetes. Quali is trusted by IT leaders and DevOps experts around the globe to enable self-service automation.
  • 42
    NVIDIA Triton Inference Server Reviews
    The NVIDIA Triton™ inference server provides efficient and scalable AI solutions for production environments. This open-source software simplifies the process of AI inference, allowing teams to deploy trained models from various frameworks, such as TensorFlow, NVIDIA TensorRT®, PyTorch, ONNX, XGBoost, Python, and more, across any infrastructure that relies on GPUs or CPUs, whether in the cloud, data center, or at the edge. By enabling concurrent model execution on GPUs, Triton enhances throughput and resource utilization, while also supporting inferencing on both x86 and ARM architectures. It comes equipped with advanced features such as dynamic batching, model analysis, ensemble modeling, and audio streaming capabilities. Additionally, Triton is designed to integrate seamlessly with Kubernetes, facilitating orchestration and scaling, while providing Prometheus metrics for effective monitoring and supporting live updates to models. This software is compatible with all major public cloud machine learning platforms and managed Kubernetes services, making it an essential tool for standardizing model deployment in production settings. Ultimately, Triton empowers developers to achieve high-performance inference while simplifying the overall deployment process.
  • 43
    Qualcomm AI Inference Suite Reviews
    The Qualcomm AI Inference Suite serves as a robust software platform aimed at simplifying the implementation of AI models and applications in both cloud-based and on-premises settings. With its convenient one-click deployment feature, users can effortlessly incorporate their own models, which can include generative AI, computer vision, and natural language processing, while also developing tailored applications that utilize widely-used frameworks. This suite accommodates a vast array of AI applications, encompassing chatbots, AI agents, retrieval-augmented generation (RAG), summarization, image generation, real-time translation, transcription, and even code development tasks. Enhanced by Qualcomm Cloud AI accelerators, the platform guarantees exceptional performance and cost-effectiveness, thanks to its integrated optimization methods and cutting-edge models. Furthermore, the suite is built with a focus on high availability and stringent data privacy standards, ensuring that all model inputs and outputs remain unrecorded, thereby delivering enterprise-level security and peace of mind to users. Overall, this innovative platform empowers organizations to maximize their AI capabilities while maintaining a strong commitment to data protection.
  • 44
    Amazon EC2 Inf1 Instances Reviews
    Amazon EC2 Inf1 instances are specifically designed to provide efficient, high-performance machine learning inference at a competitive cost. They offer an impressive throughput that is up to 2.3 times greater and a cost that is up to 70% lower per inference compared to other EC2 offerings. Equipped with up to 16 AWS Inferentia chips—custom ML inference accelerators developed by AWS—these instances also incorporate 2nd generation Intel Xeon Scalable processors and boast networking bandwidth of up to 100 Gbps, making them suitable for large-scale machine learning applications. Inf1 instances are particularly well-suited for a variety of applications, including search engines, recommendation systems, computer vision, speech recognition, natural language processing, personalization, and fraud detection. Developers have the advantage of deploying their ML models on Inf1 instances through the AWS Neuron SDK, which is compatible with widely-used ML frameworks such as TensorFlow, PyTorch, and Apache MXNet, enabling a smooth transition with minimal adjustments to existing code. This makes Inf1 instances not only powerful but also user-friendly for developers looking to optimize their machine learning workloads. The combination of advanced hardware and software support makes them a compelling choice for enterprises aiming to enhance their AI capabilities.
  • 45
    AWS Inferentia Reviews
    AWS Inferentia accelerators, engineered by AWS, aim to provide exceptional performance while minimizing costs for deep learning (DL) inference tasks. The initial generation of AWS Inferentia accelerators supports Amazon Elastic Compute Cloud (Amazon EC2) Inf1 instances, boasting up to 2.3 times greater throughput and a 70% reduction in cost per inference compared to similar GPU-based Amazon EC2 instances. Numerous companies, such as Airbnb, Snap, Sprinklr, Money Forward, and Amazon Alexa, have embraced Inf1 instances and experienced significant advantages in both performance and cost. Each first-generation Inferentia accelerator is equipped with 8 GB of DDR4 memory along with a substantial amount of on-chip memory. The subsequent Inferentia2 model enhances capabilities by providing 32 GB of HBM2e memory per accelerator, quadrupling the total memory and decoupling the memory bandwidth, which is ten times greater than its predecessor. This evolution in technology not only optimizes the processing power but also significantly improves the efficiency of deep learning applications across various sectors.