Best Ansys Lumerical Multiphysics Alternatives in 2025

Find the top alternatives to Ansys Lumerical Multiphysics currently available. Compare ratings, reviews, pricing, and features of Ansys Lumerical Multiphysics alternatives in 2025. Slashdot lists the best Ansys Lumerical Multiphysics alternatives on the market that offer competing products that are similar to Ansys Lumerical Multiphysics. Sort through Ansys Lumerical Multiphysics alternatives below to make the best choice for your needs

  • 1
    COMSOL Multiphysics Reviews
    Utilize COMSOL's multiphysics software to replicate real-world designs, devices, and processes effectively. This versatile simulation tool is grounded in sophisticated numerical techniques. It boasts comprehensive capabilities for both fully coupled multiphysics and single-physics modeling. Users can navigate a complete modeling workflow, starting from geometry creation all the way to postprocessing. The software provides intuitive tools for the development and deployment of simulation applications. COMSOL Multiphysics® ensures a consistent user interface and experience across various engineering applications and physical phenomena. Additionally, specialized functionality is available through add-on modules that cater to fields such as electromagnetics, structural mechanics, acoustics, fluid dynamics, thermal transfer, and chemical engineering. Users can select from a range of LiveLink™ products to seamlessly connect with CAD systems and other third-party software. Furthermore, applications can be deployed using COMSOL Compiler™ and COMSOL Server™, enabling the creation of physics-driven models and simulation applications within this robust software ecosystem. With such extensive capabilities, it empowers engineers to innovate and enhance their projects effectively.
  • 2
    Ansys Motor-CAD Reviews
    Ansys Motor-CAD serves as a specialized tool for the design of electric machines, facilitating rapid multiphysics simulations throughout the entire torque-speed operating range. It allows design engineers to assess various motor configurations and concepts to create designs that maximize performance, efficiency, and compactness. With its four integrated modules—EMag, Therm, Lab, and Mech—Motor-CAD enables quick and iterative multiphysics calculations, significantly reducing the time from initial concept to finalized design. This efficiency in calculations and streamlined data input processes provides users with the opportunity to investigate a broader array of motor topologies and thoroughly evaluate the effects of advanced loss mechanisms in the early phases of electromechanical design. The latest release boasts enhanced capabilities for design optimization, multiphysics analysis, and system modeling tailored specifically for electric motors, ensuring that engineers have the tools they need for cutting-edge development. Ultimately, Motor-CAD's fast multiphysics simulation capabilities across the full torque-speed range empower engineers to innovate and refine electric motor designs with unprecedented efficiency.
  • 3
    OptoCompiler Reviews
    Synopsys OptoCompiler stands out as the first comprehensive design platform in the industry that seamlessly integrates electronic and photonic design capabilities. This innovative solution merges advanced photonic technology with Synopsys' proven electronic design tools, allowing engineers to efficiently and accurately create and validate intricate designs for photonic integrated circuits. By offering a schematic-driven layout alongside sophisticated photonic layout synthesis within a single interface, OptoCompiler effectively connects photonic specialists with integrated circuit designers, thereby enhancing the accessibility, speed, and flexibility of photonic design processes. The platform's support for electronic-photonic co-design ensures scalable methodologies, while its robust features for hierarchical design facilitate collaboration among multiple designers, significantly reducing product development timelines. Additionally, OptoCompiler is equipped with specialized native photonic simulators that work in tandem with widely recognized electrical simulators, delivering precise simulation results that account for variations in statistical data. This combination of features makes OptoCompiler a pivotal tool for advancing the field of integrated photonic design.
  • 4
    OptSim Reviews
    Synopsys OptSim stands out as a highly acclaimed simulator for photonic integrated circuits (PICs) and fiber-optic systems, empowering engineers to effectively design and refine photonic circuits and associated systems. With its cutting-edge algorithms for both time and frequency domains, it provides a dedicated photonic environment that ensures precise simulation results. OptSim can operate independently, complete with its own graphical user interface, or be integrated within the OptoCompiler Photonic IC design platform for enhanced functionality. When combined with OptoCompiler, it allows for electro-optic co-simulation alongside Synopsys PrimeSim HSPICE and PrimeSim SPICE electrical circuit simulators, offering a seamless experience with the PrimeWave Design Environment that facilitates advanced simulations, analyses, and visualizations, including parametric scans and Monte Carlo methods. Additionally, the software is equipped with a comprehensive array of libraries containing photonic and electronic components, as well as various analysis tools, and is compatible with a wide range of foundry process design kits (PDKs), making it an invaluable resource for engineers in the field. Its versatility and depth of features make Synopsys OptSim a crucial tool for anyone involved in photonic design.
  • 5
    Ansys SPEOS Reviews
    Ansys SPEOS offers predictive capabilities for illumination and optical system performance, significantly reducing both prototyping time and costs while enhancing the efficiency of your products. With a user-friendly and detailed interface, Ansys SPEOS boosts productivity through GPU utilization for simulation previews and provides seamless integration with the Ansys multiphysics ecosystem. The tool's accuracy has been validated by the International Commission on Illumination (CIE) against the CIE 171:2006 standards, demonstrating the advantages of its light modeling software. Activate the lighting in your virtual model to easily investigate light propagation in a three-dimensional space. The SPEOS Live preview feature includes both simulation and rendering tools, allowing for an interactive design experience. By conducting accurate simulations on the first attempt, you can reduce iteration times and accelerate your decision-making, all while automatically optimizing the designs for optical surfaces, light guides, and lenses. This innovative approach not only streamlines the design process but also empowers creators to achieve higher precision in their optical designs.
  • 6
    FEATool Multiphysics Reviews
    FEATool Multiphysics – "Physics Simulator Made Easy" – a fully integrated physics simulation, FEA and CFD toolbox. FEATool Multiphysics provides a fully integrated simulation platform that includes a unified user interface for several multi-physics solvers such as OpenFOAM and Computational fluid dynamics (CFD), including SU2 Code and FEniCS. This allows users to model coupled physics phenomena, such as those found in fluid flow and heat transfer, structural, electromagnetics acoustics and chemical engineering applications. FEATool multiphysics is a trusted tool for engineers and researchers in the energy, automotive and semi-conductor industries.
  • 7
    OnScale Solve Reviews
    OnScale stands out as the pioneering platform for Cloud Engineering Simulation, merging advanced multiphysics solver technology with the boundless computational capabilities of cloud supercomputers. This innovative solution empowers engineers to execute a vast array of full 3D multiphysics simulations concurrently, enabling the creation of authentic Digital Prototypes that represent the complete operational behavior of intricate high-tech devices. With the aim of delivering an exceptional Cloud Engineering Simulation experience, OnScale Solve is designed to be intuitive, robust, and effective. It operates seamlessly on both public and private cloud supercomputers and features a user-friendly web interface, an API for smooth integration into existing design processes, customizable scripting options for tailored engineering simulations, and plugins that expand its modeling functionalities. Furthermore, OnScale Solve equips engineers with the capability to synthetically generate data crucial for training advanced AI/ML algorithms, thereby enhancing innovation in technology development. This comprehensive platform ensures that engineers have the tools they need to push the boundaries of simulation and design.
  • 8
    LiveLink for MATLAB Reviews
    Effortlessly combine COMSOL Multiphysics® with MATLAB® to broaden your modeling capabilities through scripting within the MATLAB framework. The LiveLink™ for MATLAB® feature empowers you to access the comprehensive functionalities of MATLAB and its various toolboxes for tasks such as preprocessing, model adjustments, and postprocessing. Elevate your custom MATLAB scripts by integrating robust multiphysics simulations. You can base your geometric modeling on either probabilistic elements or image data. Furthermore, leverage multiphysics models alongside Monte Carlo simulations and genetic algorithms for enhanced analysis. Exporting COMSOL models in a state-space matrix format allows for their integration into control systems seamlessly. The COMSOL Desktop® interface facilitates the utilization of MATLAB® functions during your modeling processes. You can also manipulate your models via command line or scripts, enabling you to parameterize aspects such as geometry, physics, and the solution approach, thus boosting the efficiency and flexibility of your simulations. This integration ultimately provides a powerful platform for conducting complex analyses and generating insightful results.
  • 9
    Fidelity CFD Reviews
    Enhance engineering processes with the only comprehensive and user-friendly CFD platform designed for multidisciplinary design and optimization. Computational fluid dynamics (CFD) plays a crucial role in multiphysics system analysis, allowing for the simulation of fluid behavior and thermodynamic characteristics through advanced numerical models. Engineers leverage the Cadence Fidelity CFD platform for various design tasks, including propulsion, aerodynamics, hydrodynamics, and combustion, to enhance product efficiency while minimizing the need for costly and time-intensive physical testing. This robust Fidelity CFD platform offers a seamless end-to-end solution tailored for applications across aerospace, automotive, turbomachinery, and marine sectors. With its efficient workflows, massively parallel architecture, and cutting-edge solver technology, the platform delivers remarkable performance and accuracy, significantly boosting engineering productivity in addressing contemporary design challenges. Ultimately, Fidelity stands out by not only simplifying complex processes but also enabling engineers to innovate rapidly and effectively.
  • 10
    L-Edit Photonics Reviews
    Create your photonic integrated circuit within a layout-focused workflow that allows designers to utilize either a drag-and-drop interface or a script-based approach. Both methods are facilitated by a comprehensive custom IC design layout editor, which also manages the physical verification and tape-out stages. L-Edit Photonics allows for rapid photonic design creation through its intuitive drag-and-drop functionality, eliminating the need for coding. Upon finalizing the design, a netlist can be generated to support photonic simulations. The PIC design is entirely integrated within an IC layout editor, enabling users to develop layouts without writing any code, thus supporting a layout-centric approach that does not require a schematic. For those who prefer a schematic flow, S-Edit is available as an optional tool. Moreover, a simulation netlist can be produced for input into a photonic simulator, and photonic simulations are seamlessly incorporated through partnerships with various providers. Additionally, multiple foundries offer photonic PDKs to enhance design capabilities. Overall, this comprehensive workflow simplifies the photonic design process while catering to various designer preferences.
  • 11
    Ansys Zemax OpticStudio Reviews
    Ansys Zemax OpticStudio is a sophisticated optical design software that is widely employed by educational institutions and businesses around the world for the creation and evaluation of optical systems, including those used for imaging, illumination, and lasers. The software features an intuitive interface that combines analysis, optimization, and tolerancing capabilities, making it easier to develop intricate optical systems applicable across various fields. It supports both sequential and non-sequential ray tracing, which allows for accurate representation of light behavior as it travels through different optical elements. Additionally, its advanced capabilities include structural and thermal analysis, empowering users to evaluate how environmental conditions might affect optical system performance. With a rich library of materials and optical components, OpticStudio significantly enhances the precision of its simulations. Furthermore, Ansys provides a complimentary version of OpticStudio for students, offering them the opportunity to gain practical experience in optical design and analysis, which is essential for their future endeavors in the optics industry. This initiative not only fosters a deeper understanding of optics but also encourages innovation and creativity among budding engineers.
  • 12
    NVIDIA Modulus Reviews
    NVIDIA Modulus is an advanced neural network framework that integrates the principles of physics, represented through governing partial differential equations (PDEs), with data to create accurate, parameterized surrogate models that operate with near-instantaneous latency. This framework is ideal for those venturing into AI-enhanced physics challenges or for those crafting digital twin models to navigate intricate non-linear, multi-physics systems, offering robust support throughout the process. It provides essential components for constructing physics-based machine learning surrogate models that effectively merge physics principles with data insights. Its versatility ensures applicability across various fields, including engineering simulations and life sciences, while accommodating both forward simulations and inverse/data assimilation tasks. Furthermore, NVIDIA Modulus enables parameterized representations of systems that can tackle multiple scenarios in real time, allowing users to train offline once and subsequently perform real-time inference repeatedly. As such, it empowers researchers and engineers to explore innovative solutions across a spectrum of complex problems with unprecedented efficiency.
  • 13
    L-Edit MEMS Reviews
    L-Edit MEMS stands out as the premier platform for 3D MEMS design. The initial phase of creating a digital twin for MEMS devices starts with capturing designs in L-Edit. Designers in the MEMS field gain significant advantages from an integrated environment that encompasses device design, modeling for fabrication, and connections to FEM analysis tools. As the leading standard for MEMS design, L-Edit MEMS is uniquely equipped with true native curve support, making it the sole tool crafted specifically for MEMS and integrated circuit design. This platform serves as the cornerstone for the MEMS digital twin, facilitating not only device design but also 3D modeling of fabrication and simulations through established partnerships. Users can generate a 3D solid model based on layout data and descriptions of the fabrication process. It provides an insightful 3D graphical representation of the MEMS fabrication journey. Furthermore, it supports multi-physics simulations in conjunction with widely-used FEM analysis tools, allowing for the export of models to FEM/BEM simulators for thorough 3D evaluations. With its component libraries, design reuse is made simple and efficient, enhancing productivity in the MEMS design process. Ultimately, L-Edit MEMS offers a comprehensive suite of tools that empowers designers to innovate and streamline their workflows effectively.
  • 14
    CAESIM Reviews

    CAESIM

    Adaptive Research

    $1295/annual standard
    Adaptive Research is excited to unveil the CAESIM 2024 simulation platform, which is now available for immediate use, featuring enhanced computational fluid dynamics modeling along with multi-physics functionalities. This latest software version introduces innovative tools and features designed to streamline the modeling process, enabling CFD engineers to achieve rapid simulation results with greater efficiency. Additionally, the platform aims to enhance user experience through improved interfaces and capabilities.
  • 15
    FLOW-3D Reviews
    Enhance product development and accelerate the launch process with FLOW-3D, an exceptionally precise CFD software adept at addressing transient, free-surface challenges. Accompanied by our cutting-edge postprocessor, FlowSight, FLOW-3D offers a comprehensive multiphysics suite. This versatile CFD simulation platform empowers engineers to explore the dynamic interactions of liquids and gases across a diverse array of industrial sectors and physical phenomena. With a strong emphasis on multi-phase and free surface applications, FLOW-3D caters to various industries, including microfluidics, biomedical technology, civil water infrastructure, aerospace, consumer goods, additive manufacturing, inkjet printing, laser welding, automotive, offshore enterprises, and energy sectors. As a remarkably effective multiphysics resource, FLOW-3D combines functionality, user-friendliness, and robust capabilities to support engineers in achieving their modeling goals, ultimately driving innovation and efficiency in their projects. By leveraging FLOW-3D, organizations can overcome complex challenges and ensure that their designs are optimized for success in competitive markets.
  • 16
    Simcenter STAR-CCM+ Reviews
    Simcenter STAR-CCM+ is an advanced multiphysics computational fluid dynamics (CFD) software that enables the simulation of products in conditions that mimic real-life scenarios. This software stands out by incorporating automated design exploration and optimization into the CFD toolkit accessible to engineers. With a unified platform that encompasses CAD, automated meshing, multiphysics CFD capabilities, and advanced postprocessing, it empowers engineers to thoroughly investigate the entire design landscape, facilitating quicker and more informed design choices. By leveraging the insights offered by Simcenter STAR-CCM+, the design process becomes more strategic, ultimately resulting in innovative products that surpass customer expectations. Enhancing a battery's performance across its complete operating spectrum is a complex endeavor that necessitates the concurrent optimization of various parameters. In this context, Simcenter delivers a comprehensive simulation environment tailored for the analysis and design of electrochemical systems, fostering a deeper understanding of their behavior. This holistic approach allows engineers to tackle intricate challenges with confidence and precision.
  • 17
    SwiftComp Reviews
    SwiftComp is an innovative composite simulation software that combines multiscale and multiphysics capabilities to provide the precision of 3D finite element analysis (FEA) with the simplicity of basic engineering models. This groundbreaking tool simplifies the modeling process for engineers, allowing them to treat composites with the same ease as metals while maintaining accuracy and capturing intricate microstructural details. It offers cohesive modeling for structures that are one-dimensional (like beams), two-dimensional (such as plates or shells), and three-dimensional, effectively calculating the material properties required. Users can utilize SwiftComp independently for virtual composite testing or as an enhancement to existing structural analysis tools, thereby integrating high-fidelity composite modeling into their workflows. Additionally, SwiftComp excels in determining the optimal structural model for macroscopic analysis and includes capabilities for dehomogenization, which enables the calculation of pointwise stresses within the microstructure. It seamlessly connects with established software such as ABAQUS and ANSYS, further broadening its applicability in engineering projects. As a result, SwiftComp significantly enhances the efficiency and effectiveness of composite material modeling in various engineering applications.
  • 18
    SOLIDWORKS Simulation Reviews
    Subjecting your designs to real-world scenarios can significantly enhance product quality while simultaneously minimizing the costs associated with prototyping and physical testing. The SOLIDWORKS® Simulation suite offers a user-friendly collection of structural analysis tools that employ Finite Element Analysis (FEA) to forecast how a product will behave in actual physical conditions by virtually evaluating CAD models. This comprehensive portfolio is equipped with capabilities for both linear and non-linear static and dynamic analyses. With SOLIDWORKS Simulation Professional, you can refine your designs by assessing mechanical resistance, durability, topology, natural frequencies, as well as examining heat transfer and potential buckling issues. Additionally, it facilitates sequential multi-physics simulations to enhance design accuracy. On the other hand, SOLIDWORKS Simulation Premium allows for an in-depth assessment of designs concerning nonlinear and dynamic responses, dynamic loading conditions, and composite materials. This advanced tier also features three specialized studies: Non-Linear Static, Non-Linear Dynamic, and Linear Dynamics, ensuring a thorough evaluation of your engineering projects. By leveraging these powerful tools, engineers can achieve greater design confidence and innovation.
  • 19
    Photon Engine Reviews
    Photon Engine serves as a robust networking solution that empowers developers to create and expand real-time multiplayer games across an array of platforms, such as mobile devices, PCs, consoles, and VR/AR systems. It features tailored components like Photon Fusion, which offers superior state synchronization across different network architectures, and Photon Quantum, a deterministic engine that removes the necessity for netcode, guaranteeing seamless gameplay while providing excellent protection against cheating. Furthermore, with its integrated matchmaking capabilities, minimal latency communication, and support for cross-platform interactions, Photon Engine streamlines the multiplayer game development process, allowing developers to leverage its extensive infrastructure through the global Photon Cloud hosting. This infrastructure not only eases the backend management burdens but also enables creators to concentrate on crafting engaging and immersive gaming experiences that captivate players. The versatility and efficiency of Photon Engine make it an invaluable asset for modern game developers aiming for success in the competitive gaming landscape.
  • 20
    Ansys RedHawk-SC Reviews
    Ansys RedHawk-SC stands as the industry's premier solution for voltage drop and electromigration multiphysics sign-off in digital designs, recognized for its reliability. Its advanced analytics swiftly uncover vulnerabilities and facilitate what-if scenarios to enhance both power efficiency and performance. The cloud-based framework of RedHawk-SC ensures it can efficiently manage full-chip analyses with remarkable speed and capacity. The signoff precision is validated by all leading foundries across all finFET nodes, including those down to 3nm. Through its sophisticated power analytics, Ansys RedHawk-SC supports the creation of robust, low-power digital designs without sacrificing performance, offering designers extensive methods to identify and rectify dynamic voltage drop issues. The trusted multiphysics signoff analysis provided by Ansys RedHawk-SC significantly mitigates project and technology risks. Additionally, its algorithms have been rigorously validated by major foundries for all finFET processes and have demonstrated success in countless tapeouts, further solidifying its reputation in the industry. As technology continues to evolve, the capabilities of Ansys RedHawk-SC will adapt to meet future challenges in digital design.
  • 21
    Photon OS Reviews
    Photon OS™ is a minimal, open-source Linux container host designed specifically for cloud-native applications, cloud platforms, and VMware infrastructure. With the release of Photon OS 3.0, there are new features such as support for ARM64 architecture, enhancements to the installer, and refreshed package updates. We welcome collaboration from partners, customers, and community members in leveraging Photon OS for running efficient virtual machines and containerized applications. This OS includes everything necessary for installation, and users can select either a minimal or a comprehensive installation based on their deployment requirements. Photon OS can be installed directly from an ISO file or utilized in PXE/kickstart environments for automated setups. This makes it a portable and ready-to-use virtual environment. Additionally, the Photon OS Open Virtual Appliance packages come with a refined and optimized kernel, as well as packages designed to facilitate and standardize appliance deployments. By utilizing Photon OS, developers can create and build modern applications effectively in a streamlined development environment. In essence, Photon OS stands out as a versatile solution for various cloud-centric needs.
  • 22
    VSim Reviews
    VSim is a sophisticated Multiphysics Simulation Software tailored for design engineers and research scientists who seek accurate solutions for complex challenges. Its exceptional integration of Finite-Difference Time-Domain (FDTD), Particle-in-Cell (PIC), and Charged Fluid (Finite Volume) methodologies ensures reliable outcomes across various applications, including plasma modeling. As a parallel software tool, VSim adeptly tackles large-scale problems, with simulations that execute rapidly thanks to algorithms optimized for high-performance computing environments. Renowned by researchers in over 30 countries and utilized by professionals across fields such as aerospace and semiconductor manufacturing, VSim guarantees results with verified accuracy that users can depend on. Developed by a dedicated group of computational scientists, Tech-X’s software has garnered thousands of citations in scientific literature, and VSim is prominently featured in many leading research institutions worldwide. Furthermore, its continued evolution reflects the commitment to meeting the ever-growing demands of modern scientific inquiry.
  • 23
    Ansys Autodyn Reviews
    Ansys Autodyn enables the simulation of material responses to various events, including short-duration severe mechanical loadings, high pressures, and explosions. This software combines advanced solution techniques with user-friendly features, making it accessible for quick comprehension and simulation of significant material deformation or failure. It offers a diverse range of models to accurately capture complex physical phenomena, such as the interactions between liquids, solids, and gases, as well as phase transitions in materials and shock wave propagation. With seamless integration into Ansys Workbench and its intuitive user interface, Ansys Autodyn stands out in the industry by facilitating the generation of precise results efficiently. The inclusion of the smooth particle hydrodynamics (SPH) solver enhances its capabilities for explicit analysis, ensuring comprehensive support for various simulation needs. Furthermore, Ansys Autodyn allows users to choose from multiple solver technologies, ensuring that the most suitable solver is applied for different components of the model, thus optimizing performance and accuracy.
  • 24
    Energy2D Reviews

    Energy2D

    The Concord Consortium

    Free
    Energy2D is an interactive multiphysics simulation program grounded in computational physics, designed to model the three primary modes of heat transfer: conduction, convection, and radiation, while also integrating particle dynamics. This software operates efficiently on a wide range of computers, simplifying the process by removing the need for switches between preprocessors, solvers, and postprocessors that are usually necessary for computational fluid dynamics simulations. Users can create "computational experiments" to explore scientific hypotheses or address engineering challenges without the need for intricate mathematical formulations. Additionally, development is ongoing to introduce various energy transformation types and to enhance support for different fluid types. While Energy2D excels in accurately modeling conduction, its representations of convection and radiation are not entirely precise, which means results involving these elements should be regarded as qualitative. Over 40 scientific papers have utilized Energy2D as a valuable research instrument, showcasing its adoption in the academic community. As the program evolves, its capabilities are expected to expand further, potentially offering more comprehensive insights into complex physical interactions.
  • 25
    VirtualLab Fusion Reviews
    VirtualLab Fusion is a cutting-edge optical design software that streamlines fast physical optics modeling by linking different field solvers via a distinctive operator and channel approach. This integration allows for effective simulations that achieve a harmonious balance between precision and speed. The software comes equipped with an array of packages customized for particular optical design requirements, offering an assortment of tools and features to cater to various applications. With its user-friendly interface, VirtualLab Fusion makes the design process more accessible, enabling users to prioritize innovation and optimization in their projects. Additionally, the platform includes resources such as tips, tricks, training sessions, and webinars to further boost user expertise and proficiency in utilizing the software. This comprehensive support ensures that users can fully leverage the capabilities of the software for their optical design endeavors.
  • 26
    LucidShape Reviews
    Easily and swiftly design reflector or lens geometries using LucidShape FunGeo, which utilizes innovative algorithms to automatically generate optical shapes tailored to specified illuminance and intensity patterns. This distinctive and practical method allows you to prioritize overall design goals instead of getting bogged down by the complexities of intricate optical elements. By utilizing GPUTrace, you can significantly speed up LucidShape illumination simulations, achieving remarkable enhancements in processing speed. As the pioneering optical simulation software harnessing the power of graphics processing units, LucidShape offers speed improvements that far exceed traditional multithreading methods. Additionally, LucidShape's visualization tool provides a platform to showcase luminance effects when various light sources interact within a model, allowing for a comprehensive depiction of the interplay between system geometry and illumination. This combination of powerful features makes LucidShape an invaluable asset for designers and engineers in the optical field.
  • 27
    Ansys Meshing Reviews
    The mesh significantly impacts the precision, convergence, and speed of a simulation. Ansys offers a suite of tools designed to create the most suitable mesh for delivering precise and efficient solutions. Their general-purpose, high-performance, automated, and intelligent meshing software is capable of generating the optimal mesh for accurate multiphysics solutions, ranging from straightforward automatic meshing to meticulously crafted mesh designs. The software incorporates smart defaults that simplify the meshing process, making it intuitive and effortless, while ensuring the necessary resolution to effectively capture solution gradients for reliable outcomes. Ansys’s meshing solutions cater to a wide variety of needs, from basic automated meshing techniques to advanced, custom meshing options. The available methods encompass a broad range of meshing techniques, including high-order and linear elements, as well as rapid tetrahedral and polyhedral meshes, alongside high-quality hexahedral and mosaic configurations. By leveraging Ansys's meshing capabilities, users can significantly minimize the time and resources required to achieve accurate simulation results, ultimately enhancing productivity and efficiency in their projects. Thus, the integration of Ansys meshing tools can transform the simulation process, leading to a more streamlined workflow and improved outcomes.
  • 28
    DC-AM DigitalClone for Additive Manufacturing Reviews
    DigitalClone for Additive Manufacturing (DCAM) is a comprehensive suite of metal additive manufacturing simulation and modeling capabilities that allows for seamless design and analysis support. DC-AM uses a multiscale, multi-physics analysis approach to link the process - microstructure and fatigue relationship of additively produced parts to enable computational assessment for quality and performance. DC-AM encourages the adoption of AM in safety-critical sectors by providing unprecedented insight into build conditions and the characteristics and final parts. This allows for a reduction in time and cost, as well as allowing for a reduction in the time and costs required to qualify parts.
  • 29
    EMWorks Reviews
    EMWorks offers top-tier electromagnetic simulation software designed for electrical and electronics engineering, incorporating multiphysics features. Their solutions are fully integrated into SOLIDWORKS and Autodesk Inventor®, catering to a wide range of applications such as electromechanical systems, power electronics, antennas, RF and microwave components, as well as ensuring power and signal integrity in high-speed interconnects. One of their flagship products, EMS, serves as a powerful tool for simulating and optimizing electromagnetic and electromechanical devices like transformers, electric motors, actuators, and sensors within the SOLIDWORKS® and Autodesk® Inventor® environments. Additionally, EMWorks2D is a specialized 2D electromagnetic simulation software that focuses on planar and axis-symmetric geometries, also fully embedded in SOLIDWORKS, allowing users to perform quick simulations prior to transitioning to 3D models. This functionality not only enhances the design process but also accelerates overall product development, making it easier for engineers to refine their designs efficiently. By leveraging these advanced tools, users can achieve optimal performance in their electronic designs while saving valuable time in the engineering workflow.
  • 30
    Ansys Lumerical FDTD Reviews
    Ansys Lumerical FDTD stands as the premier choice for simulating nanophotonic devices, processes, and materials. Its integrated design environment features robust scripting capabilities, sophisticated post-processing options, and optimization routines. This meticulously refined application of the FDTD method ensures exceptional solver performance across a wide range of applications. With these tools at your disposal, you can concentrate on the creative aspects of your design while relying on the software to handle the technical complexities. The platform offers a variety of advantages that facilitate flexible and customizable modeling and simulation. By leveraging Ansys Lumerical FDTD, you can effectively model nanophotonic devices, processes, and materials, thus empowering your innovative pursuits. Ultimately, Lumerical FDTD exemplifies excellence in the field, delivering dependable, powerful, and scalable solver performance tailored to meet diverse application needs.
  • 31
    samadii/em Reviews

    samadii/em

    Metariver Technology Co.,Ltd

    samadii/em oftware that analyzes and calculates the electromagnetic field in 3d space using the Maxwell equation using vector FEM ad GPU computing. it provides electrostatics, magnetostatics as well and induction electronics, including the low-frequency and high-frequency ranges. samadii/em provides a multi-physics approach and high-performance electromagnetics simulation, with Samadii you can quickly address problems from semiconductors and displays to wireless communications, etc.
  • 32
    3DOptix Reviews

    3DOptix

    3DOptix

    $2,000 per year
    3DOptix is an innovative platform for optical design and simulation that operates in the cloud, allowing users to efficiently create, analyze, and enhance optical systems. By utilizing cloud technology and GPU acceleration, it provides users with fast analysis capabilities without requiring any local software installations. The platform hosts a vast library of readily available optical and optomechanical components, which aids in accurately producing digital twins of optical prototypes. Featuring an easy-to-use 3D graphical interface with drag-and-drop functionality and real-time visualization, it streamlines the design workflow significantly. With support for both sequential and non-sequential ray tracing, 3DOptix enables detailed modeling of intricate optical systems. Moreover, it includes real-time collaboration tools, allowing multiple users to concurrently contribute to the same project, making sharing effortless through cloud links. Accessible from any web browser, the platform alleviates the need for specific hardware or software, promoting widespread usability. This flexibility encourages creativity and innovation among its users, fostering a collaborative environment for optical design experimentation.
  • 33
    CODE V Optical Design Reviews
    CODE V, developed by Synopsys, is an advanced optical design software that empowers engineers to create, evaluate, enhance, and assist in the production of imaging optical systems. It includes sophisticated functionalities for the design of intricate optical elements, such as freeform surfaces, and integrates essential tools like global synthesis for overall optimization, glass expert for smart glass selection, and beam synthesis propagation for precise diffraction assessments. The software's extensive tolerancing features are instrumental in minimizing manufacturing expenses by forecasting and addressing potential fabrication and assembly discrepancies. Additionally, CODE V supports seamless integration with other Synopsys applications, like LightTools, to provide a holistic approach to optical and illumination system design. Furthermore, it boasts extensive graphical capabilities, encompassing images, data plots, shaded displays, and even 3D visualizations alongside diffraction-based image simulations, ensuring users can effectively visualize and analyze their designs. This comprehensive suite of tools makes CODE V an invaluable asset for optical engineers worldwide.
  • 34
    Simcenter Femap Reviews

    Simcenter Femap

    Siemens Digital Industries

    Simcenter Femap is a sophisticated simulation tool designed for the creation, modification, and analysis of finite element models pertaining to intricate products or systems. This software allows users to implement advanced workflows for modeling individual components, assemblies, or entire systems, enabling them to assess how these models react under realistic conditions. Moreover, Simcenter Femap offers robust data-driven capabilities and graphical visualizations for results interpretation, which, when paired with the top-tier Simcenter Nastran, provides a holistic CAE solution aimed at enhancing product performance. As manufacturers strive to develop lighter yet more robust products, there is a growing emphasis on the utilization of composite materials. Simcenter stands at the forefront of composite analysis, continually advancing its material models and element types to meet industry demands. Furthermore, Simcenter accelerates the simulation process for laminate composite materials by providing an integrated connection to composite design, streamlining workflows for engineers in the field. This integration ultimately fosters innovation and efficiency in product development, paving the way for more sustainable manufacturing practices.
  • 35
    TRANSWELD Reviews
    In industries where the integrity of welded structures is critical, TRANSWELD® provides a cutting-edge and comprehensive solution for predicting potential welding imperfections. This advanced simulation software employs multi-physical models to accurately reflect the actual behavior of metal in both liquid and mushy phases, enabling an in-depth analysis of material transformations. Furthermore, TRANSWELD® facilitates the examination of the microstructure in solid-state assemblies. With this tool, you can ensure that your welded components meet required standards without the need for physical prototypes. Our software is entirely predictive, allowing users to digitally observe welding processes under realistic conditions. For instance, it enables the visualization of the heat source movement during simulations of techniques such as laser welding or arc welding, enhancing understanding and efficiency in the welding process. Such capabilities not only streamline production but also significantly reduce the risk of defects in the final product.
  • 36
    BeamXpertDESIGNER Reviews
    BeamXpertDESIGNER is an advanced laser simulation tool that allows for the instantaneous modeling of laser radiation as it travels through various optical systems. With its user-friendly interface that resembles CAD software, it ensures that users can obtain quick and accurate outcomes. Designed with accessibility in mind, individuals can become proficient in its use within just an hour of instruction, leading to dependable results. Its interactive design allows for the straightforward adjustment of optical elements via a drag-and-drop method, ensuring that any changes to the beam path are reflected in real-time. The software provides essential parameters, including beam diameter, waist position, and Rayleigh length, all in compliance with the ISO 11145 and 11146 standards. Featuring an extensive database of over 20,000 optical components from numerous manufacturers, BeamXpertDESIGNER facilitates the incorporation of widely accepted market components into user projects. Furthermore, it includes tools for the analysis and enhancement of optical systems, making it a versatile solution for professionals in the field. Overall, BeamXpertDESIGNER stands out as a powerful resource for anyone involved in laser optics.
  • 37
    ELEOptics Reviews
    Founded in 2019, ELEOptics is a forward-thinking company that focuses on the progression of optical engineering by offering innovative software solutions that enhance both the design and collaborative efforts of engineers. Their diverse range of products features Ember, a desktop application that supports dynamic first-order layouts and third-order design analyses; Spark, a cloud-based tool that simplifies teamwork through version control and tracking of project requirements; ARC, an integrated application with Onshape, which bridges the gap between optical and mechanical design teams to facilitate the development of opto-mechanical systems; and Aurora, an advanced optical physics library designed for large-scale simulations with an intuitive API that accelerates the process of iteration. In addition to their software offerings, ELEOptics is dedicated to nurturing a vibrant optical community, providing a platform for professionals to connect and share insights, ultimately fueling innovation within the industry. Their commitment to collaboration and advancement continues to set them apart as leaders in the optical engineering sector.
  • 38
    Ansys Mechanical Reviews
    Ansys Mechanical stands out as an exceptional finite element solver, featuring capabilities in structural, thermal, acoustics, transient, and nonlinear analyses to enhance your modeling processes. This powerful tool allows you to tackle intricate structural engineering challenges, facilitating quicker and more informed design choices. The suite's finite element analysis (FEA) solvers permit the customization and automation of solutions for structural mechanics issues, enabling the examination of various design scenarios through parameterization. With its extensive array of analysis tools, Ansys Mechanical provides a versatile environment, guiding users from geometry preparation to integrating additional physics for enhanced accuracy. Its user-friendly and adaptable interface ensures that engineers at any experience level can swiftly obtain reliable results. Overall, Ansys Mechanical fosters an integrated platform that leverages finite element analysis (FEA) for comprehensive structural evaluations, proving invaluable for modern engineering projects.
  • 39
    BeamWise Reviews
    BeamWise comprises a suite of software applications and services tailored for the development of biophotonic and intricate optical systems. Built on the Design++ knowledge-based engineering platform, it effectively captures and utilizes internal engineering knowledge while facilitating the integration of existing systems into automated design and product configuration processes. By bridging the gap between optical and mechanical domains, BeamWise enhances CAD software like AutoCAD and SolidWorks with design guidelines and a comprehensive component library, ensuring consistent beam alignment as design modifications occur throughout the system. This automation solution tackles major issues in optical system development, such as expensive prototype revisions, labor-intensive design documentation, and unpredictable instrument performance, by automating the generation of 3D CAD models and comprehensive design documentation, which includes drawings and parts listings. Ultimately, BeamWise empowers engineers to innovate more efficiently and accurately in the complex realm of optical system design.
  • 40
    Raylectron Reviews

    Raylectron

    Raylectron

    $99.95 per license
    The development of Raylectron spanned several years, involving extensive research and experimentation. Crafting such sophisticated software is quite challenging. Although ray tracing techniques have been around for a significant period before Raylectron’s inception, they often lack true photorealism. To achieve a lifelike appearance, it is essential to accurately trace the light's path to illuminate the various objects within a scene, necessitating a deep understanding of physical laws, particularly how photons behave when they collide with surfaces. In reality, photons move at light speed, allowing us to perceive illumination almost instantaneously. However, replicating this effect in a computer program is far from straightforward. The speed of calculations presents a significant hurdle, as computers cannot process information at the speed of light. Additionally, the underlying mathematics is incredibly intricate and demanding. Raylectron integrates all these complex features into a single, user-friendly software solution. It offers users an extensive selection of illumination options and allows for real-time texturing of models, making the process more accessible than ever before. This seamless combination of capabilities elevates the user experience significantly.
  • 41
    BIOVIA Materials Studio Reviews
    BIOVIA Materials Studio serves as an all-encompassing platform for modeling and simulation, specifically tailored to assist researchers in the fields of materials science and chemistry in forecasting and comprehending how a material's atomic and molecular configurations correlate with its characteristics and functionalities. By adopting an "in silico first" strategy, researchers can enhance material performance in a budget-friendly virtual environment before moving to physical experimentation. This versatile software accommodates a diverse array of materials, such as catalysts, polymers, composites, metals, alloys, pharmaceuticals, and batteries. With capabilities that span quantum, atomistic, mesoscale, statistical, analytical, and crystallization simulations, it streamlines the development of innovative materials across multiple sectors. Additionally, its features promote rapid innovation, decrease research and development expenditures through virtual screening, and boost productivity by automating established practices within Pipeline Pilot, making it an indispensable tool for modern material research and development. This comprehensive functionality not only enhances research efficiency but also positions users at the forefront of material advancements.
  • 42
    Ansys Totem Reviews
    Ansys Totem-SC stands out as the established and reliable leader in the realm of power noise and reliability validation for both analog and mixed-signal designs, utilizing a cloud-native elastic compute framework. Recognized as the benchmark solution for voltage drop and electromigration multiphysics sign-off at the transistor level, Ansys Totem-SC has proven its effectiveness across numerous tapeouts, leveraging a cloud-based infrastructure to provide the necessary speed and capacity for comprehensive full-chip assessments. Its accuracy in signoff has been validated by all major foundries, supporting advanced finFET technologies down to 3nm. This platform excels in power noise and reliability analysis specifically for analog mixed-signal intellectual property and fully custom designs. Moreover, it generates IP models that facilitate SOC-level power integrity signoff in conjunction with RedHawk-SC and develops compact chip models for power delivery networks applicable at both chip and system levels. The solution is not only industry-proven but also certified by foundries, making it a highly regarded choice for analog and mixed-signal electromigration and IR analysis. With Ansys Totem-SC, designers can confidently ensure the integrity and reliability of their power delivery systems throughout the design process.
  • 43
    InQuanto Reviews
    Quantum computing paves the way for the swift and cost-efficient creation of novel molecules and materials. InQuanto, an advanced platform for quantum computational chemistry, marks a significant advancement towards achieving this objective. The field of quantum chemistry seeks to precisely characterize and forecast the essential properties of matter, making it an invaluable asset for the innovation and formulation of new substances. Nonetheless, the intricacies of industrially relevant molecules and materials present challenges for accurate simulation. Current technologies necessitate a compromise, forcing users to choose between utilizing highly precise methods on minimal systems or resorting to approximations. InQuanto's adaptable workflow allows both computational chemists and quantum algorithm engineers to seamlessly integrate cutting-edge quantum algorithms with sophisticated subroutines and error mitigation techniques, optimizing performance on existing quantum platforms. This flexibility not only enhances research outcomes but also fosters collaboration among experts in the field, driving further innovation.
  • 44
    FRED Reviews
    FRED is an all-encompassing software solution designed to model the behavior of light in optomechanical systems through ray tracing techniques. It accommodates both coherent and incoherent light paths and enables users to apply realistic surface characteristics to each system component. Among its notable features are the rapid and precise simulation of a variety of light sources, including lasers, arc lamps, LEDs, ideal emitters, bulbs, and custom ray sets defined by users. The software also includes sophisticated geometry handling, scattering capabilities, optimization tools, scripting options, and graphical utilities, allowing for meticulous control over ray tracing parameters during the simulations. Additionally, it offers extensive post-tracing analysis tools and reports, facilitates real-time visualization and modification of intricate optical and mechanical configurations, and boasts high extensibility through user-generated scripts. Ultimately, FRED serves as a fundamental resource for the effective propagation of light within optomechanical frameworks, making it invaluable for researchers and engineers in the field.
  • 45
    OSLO Reviews

    OSLO

    Lambda Research Corporation

    OSLO, which stands for Optics Software for Layout and Optimization, is a sophisticated optical design software created by Lambda Research Corporation. This program combines cutting-edge ray tracing capabilities with analytical and optimization techniques, all powered by a high-speed internal compiled language, which allows users to tackle a diverse range of optical design challenges. With an open architecture, OSLO offers substantial flexibility for designers to set and manage system parameters based on their unique needs. The software proficiently models a variety of optical elements, such as refractive, reflective, diffractive, gradient index, aspheric, and freeform optics. Its advanced ray tracing algorithms, complemented by robust analytical tools, serve as a reliable foundation for optimizing and assessing various optical systems, including lenses and telescopes. Additionally, OSLO has been utilized in the creation of a wide array of optical systems, ranging from space telescopes and camera lenses to more specialized applications like zoom lenses and microscopy. This versatility makes OSLO a valuable asset for professionals in the optical design field.