RunPod
RunPod provides a cloud infrastructure that enables seamless deployment and scaling of AI workloads with GPU-powered pods. By offering access to a wide array of NVIDIA GPUs, such as the A100 and H100, RunPod supports training and deploying machine learning models with minimal latency and high performance. The platform emphasizes ease of use, allowing users to spin up pods in seconds and scale them dynamically to meet demand. With features like autoscaling, real-time analytics, and serverless scaling, RunPod is an ideal solution for startups, academic institutions, and enterprises seeking a flexible, powerful, and affordable platform for AI development and inference.
Learn more
Amazon Web Services (AWS)
AWS is the leading provider of cloud computing, delivering over 200 fully featured services to organizations worldwide. Its offerings cover everything from infrastructure—such as compute, storage, and networking—to advanced technologies like artificial intelligence, machine learning, and agentic AI. Businesses use AWS to modernize legacy systems, run high-performance workloads, and build scalable, secure applications. Core services like Amazon EC2, Amazon S3, and Amazon DynamoDB provide foundational capabilities, while advanced solutions like SageMaker and AWS Transform enable AI-driven transformation. The platform is supported by a global infrastructure that includes 38 regions, 120 availability zones, and 400+ edge locations, ensuring low latency and high reliability. AWS integrates with leading enterprise tools, developer SDKs, and partner ecosystems, giving teams the flexibility to adopt cloud at their own pace. Its training and certification programs help individuals and companies grow cloud expertise with industry-recognized credentials. With its unmatched breadth, depth, and proven track record, AWS empowers organizations to innovate and compete in the digital-first economy.
Learn more
Amazon SageMaker
Amazon SageMaker is a comprehensive machine learning platform that integrates powerful tools for model building, training, and deployment in one cohesive environment. It combines data processing, AI model development, and collaboration features, allowing teams to streamline the development of custom AI applications. With SageMaker, users can easily access data stored across Amazon S3 data lakes and Amazon Redshift data warehouses, facilitating faster insights and AI model development. It also supports generative AI use cases, enabling users to develop and scale applications with cutting-edge AI technologies. The platform’s governance and security features ensure that data and models are handled with precision and compliance throughout the entire ML lifecycle. Furthermore, SageMaker provides a unified development studio for real-time collaboration, speeding up data discovery and model deployment.
Learn more
Amazon SageMaker Model Building
Amazon SageMaker equips users with an extensive suite of tools and libraries essential for developing machine learning models, emphasizing an iterative approach to experimenting with various algorithms and assessing their performance to identify the optimal solution for specific needs. Within SageMaker, you can select from a diverse range of algorithms, including more than 15 that are specifically designed and enhanced for the platform, as well as access over 150 pre-existing models from well-known model repositories with just a few clicks. Additionally, SageMaker includes a wide array of model-building resources, such as Amazon SageMaker Studio Notebooks and RStudio, which allow you to execute machine learning models on a smaller scale to evaluate outcomes and generate performance reports, facilitating the creation of high-quality prototypes. The integration of Amazon SageMaker Studio Notebooks accelerates the model development process and fosters collaboration among team members. These notebooks offer one-click access to Jupyter environments, enabling you to begin working almost immediately, and they also feature functionality for easy sharing of your work with others. Furthermore, the platform's overall design encourages continuous improvement and innovation in machine learning projects.
Learn more