Best Amazon EC2 P5 Instances Alternatives in 2025

Find the top alternatives to Amazon EC2 P5 Instances currently available. Compare ratings, reviews, pricing, and features of Amazon EC2 P5 Instances alternatives in 2025. Slashdot lists the best Amazon EC2 P5 Instances alternatives on the market that offer competing products that are similar to Amazon EC2 P5 Instances. Sort through Amazon EC2 P5 Instances alternatives below to make the best choice for your needs

  • 1
    RunPod Reviews
    See Software
    Learn More
    Compare Both
    RunPod provides a cloud infrastructure that enables seamless deployment and scaling of AI workloads with GPU-powered pods. By offering access to a wide array of NVIDIA GPUs, such as the A100 and H100, RunPod supports training and deploying machine learning models with minimal latency and high performance. The platform emphasizes ease of use, allowing users to spin up pods in seconds and scale them dynamically to meet demand. With features like autoscaling, real-time analytics, and serverless scaling, RunPod is an ideal solution for startups, academic institutions, and enterprises seeking a flexible, powerful, and affordable platform for AI development and inference.
  • 2
    Amazon EC2 G4 Instances Reviews
    Amazon EC2 G4 instances are specifically designed to enhance the performance of machine learning inference and applications that require high graphics capabilities. Users can select between NVIDIA T4 GPUs (G4dn) and AMD Radeon Pro V520 GPUs (G4ad) according to their requirements. The G4dn instances combine NVIDIA T4 GPUs with bespoke Intel Cascade Lake CPUs, ensuring an optimal mix of computational power, memory, and networking bandwidth. These instances are well-suited for tasks such as deploying machine learning models, video transcoding, game streaming, and rendering graphics. On the other hand, G4ad instances, equipped with AMD Radeon Pro V520 GPUs and 2nd-generation AMD EPYC processors, offer a budget-friendly option for handling graphics-intensive workloads. Both instance types utilize Amazon Elastic Inference, which permits users to add economical GPU-powered inference acceleration to Amazon EC2, thereby lowering costs associated with deep learning inference. They come in a range of sizes tailored to meet diverse performance demands and seamlessly integrate with various AWS services, including Amazon SageMaker, Amazon ECS, and Amazon EKS. Additionally, this versatility makes G4 instances an attractive choice for organizations looking to leverage cloud-based machine learning and graphics processing capabilities.
  • 3
    Amazon EC2 P4 Instances Reviews
    Amazon EC2 P4d instances are designed for optimal performance in machine learning training and high-performance computing (HPC) applications within the cloud environment. Equipped with NVIDIA A100 Tensor Core GPUs, these instances provide exceptional throughput and low-latency networking capabilities, boasting 400 Gbps instance networking. P4d instances are remarkably cost-effective, offering up to a 60% reduction in expenses for training machine learning models, while also delivering an impressive 2.5 times better performance for deep learning tasks compared to the older P3 and P3dn models. They are deployed within expansive clusters known as Amazon EC2 UltraClusters, which allow for the seamless integration of high-performance computing, networking, and storage resources. This flexibility enables users to scale their operations from a handful to thousands of NVIDIA A100 GPUs depending on their specific project requirements. Researchers, data scientists, and developers can leverage P4d instances to train machine learning models for diverse applications, including natural language processing, object detection and classification, and recommendation systems, in addition to executing HPC tasks such as pharmaceutical discovery and other complex computations. These capabilities collectively empower teams to innovate and accelerate their projects with greater efficiency and effectiveness.
  • 4
    NVIDIA GPU-Optimized AMI Reviews
    The NVIDIA GPU-Optimized AMI serves as a virtual machine image designed to enhance your GPU-accelerated workloads in Machine Learning, Deep Learning, Data Science, and High-Performance Computing (HPC). By utilizing this AMI, you can quickly launch a GPU-accelerated EC2 virtual machine instance, complete with a pre-installed Ubuntu operating system, GPU driver, Docker, and the NVIDIA container toolkit, all within a matter of minutes. This AMI simplifies access to NVIDIA's NGC Catalog, which acts as a central hub for GPU-optimized software, enabling users to easily pull and run performance-tuned, thoroughly tested, and NVIDIA-certified Docker containers. The NGC catalog offers complimentary access to a variety of containerized applications for AI, Data Science, and HPC, along with pre-trained models, AI SDKs, and additional resources, allowing data scientists, developers, and researchers to concentrate on creating and deploying innovative solutions. Additionally, this GPU-optimized AMI is available at no charge, with an option for users to purchase enterprise support through NVIDIA AI Enterprise. For further details on obtaining support for this AMI, please refer to the section labeled 'Support Information' below. Moreover, leveraging this AMI can significantly streamline the development process for projects requiring intensive computational resources.
  • 5
    Amazon EC2 G5 Instances Reviews
    The Amazon EC2 G5 instances represent the newest generation of NVIDIA GPU-powered instances, designed to cater to a variety of graphics-heavy and machine learning applications. They offer performance improvements of up to three times for graphics-intensive tasks and machine learning inference, while achieving a remarkable 3.3 times increase in performance for machine learning training when compared to the previous G4dn instances. Users can leverage G5 instances for demanding applications such as remote workstations, video rendering, and gaming, enabling them to create high-quality graphics in real time. Additionally, these instances provide machine learning professionals with an efficient and high-performing infrastructure to develop and implement larger, more advanced models in areas like natural language processing, computer vision, and recommendation systems. Notably, G5 instances provide up to three times the graphics performance and a 40% improvement in price-performance ratio relative to G4dn instances. Furthermore, they feature a greater number of ray tracing cores than any other GPU-equipped EC2 instance, making them an optimal choice for developers seeking to push the boundaries of graphical fidelity. With their cutting-edge capabilities, G5 instances are poised to redefine expectations in both gaming and machine learning sectors.
  • 6
    AWS Elastic Fabric Adapter (EFA) Reviews
    The Elastic Fabric Adapter (EFA) serves as a specialized network interface for Amazon EC2 instances, allowing users to efficiently run applications that demand high inter-node communication at scale within the AWS environment. By utilizing a custom-designed operating system (OS) that circumvents traditional hardware interfaces, EFA significantly boosts the performance of communications between instances, which is essential for effectively scaling such applications. This technology facilitates the scaling of High-Performance Computing (HPC) applications that utilize the Message Passing Interface (MPI) and Machine Learning (ML) applications that rely on the NVIDIA Collective Communications Library (NCCL) to thousands of CPUs or GPUs. Consequently, users can achieve the same high application performance found in on-premises HPC clusters while benefiting from the flexible and on-demand nature of the AWS cloud infrastructure. EFA can be activated as an optional feature for EC2 networking without incurring any extra charges, making it accessible for a wide range of use cases. Additionally, it seamlessly integrates with the most popular interfaces, APIs, and libraries for inter-node communication needs, enhancing its utility for diverse applications.
  • 7
    Amazon EC2 UltraClusters Reviews
    Amazon EC2 UltraClusters allow for the scaling of thousands of GPUs or specialized machine learning accelerators like AWS Trainium, granting users immediate access to supercomputing-level performance. This service opens the door to supercomputing for developers involved in machine learning, generative AI, and high-performance computing, all through a straightforward pay-as-you-go pricing structure that eliminates the need for initial setup or ongoing maintenance expenses. Comprising thousands of accelerated EC2 instances placed within a specific AWS Availability Zone, UltraClusters utilize Elastic Fabric Adapter (EFA) networking within a petabit-scale nonblocking network. Such an architecture not only ensures high-performance networking but also facilitates access to Amazon FSx for Lustre, a fully managed shared storage solution based on a high-performance parallel file system that enables swift processing of large datasets with sub-millisecond latency. Furthermore, EC2 UltraClusters enhance scale-out capabilities for distributed machine learning training and tightly integrated HPC tasks, significantly decreasing training durations while maximizing efficiency. This transformative technology is paving the way for groundbreaking advancements in various computational fields.
  • 8
    NVIDIA NGC Reviews
    NVIDIA GPU Cloud (NGC) serves as a cloud platform that harnesses GPU acceleration for deep learning and scientific computations. It offers a comprehensive catalog of fully integrated containers for deep learning frameworks designed to optimize performance on NVIDIA GPUs, whether in single or multi-GPU setups. Additionally, the NVIDIA train, adapt, and optimize (TAO) platform streamlines the process of developing enterprise AI applications by facilitating quick model adaptation and refinement. Through a user-friendly guided workflow, organizations can fine-tune pre-trained models with their unique datasets, enabling them to create precise AI models in mere hours instead of the traditional months, thereby reducing the necessity for extensive training periods and specialized AI knowledge. If you're eager to dive into the world of containers and models on NGC, you’ve found the ideal starting point. Furthermore, NGC's Private Registries empower users to securely manage and deploy their proprietary assets, enhancing their AI development journey.
  • 9
    Amazon EC2 Trn1 Instances Reviews
    The Trn1 instances of Amazon Elastic Compute Cloud (EC2), driven by AWS Trainium chips, are specifically designed to enhance the efficiency of deep learning training for generative AI models, such as large language models and latent diffusion models. These instances provide significant cost savings of up to 50% compared to other similar Amazon EC2 offerings. They are capable of facilitating the training of deep learning and generative AI models with over 100 billion parameters, applicable in various domains, including text summarization, code generation, question answering, image and video creation, recommendation systems, and fraud detection. Additionally, the AWS Neuron SDK supports developers in training their models on AWS Trainium and deploying them on the AWS Inferentia chips. With seamless integration into popular frameworks like PyTorch and TensorFlow, developers can leverage their current codebases and workflows for training on Trn1 instances, ensuring a smooth transition to optimized deep learning practices. Furthermore, this capability allows businesses to harness advanced AI technologies while maintaining cost-effectiveness and performance.
  • 10
    NVIDIA DGX Cloud Reviews
    The NVIDIA DGX Cloud provides an AI infrastructure as a service that simplifies the deployment of large-scale AI models and accelerates innovation. By offering a comprehensive suite of tools for machine learning, deep learning, and HPC, this platform enables organizations to run their AI workloads efficiently on the cloud. With seamless integration into major cloud services, it offers the scalability, performance, and flexibility necessary for tackling complex AI challenges, all while eliminating the need for managing on-premise hardware.
  • 11
    Amazon EC2 Trn2 Instances Reviews
    Amazon EC2 Trn2 instances, equipped with AWS Trainium2 chips, are specifically designed to deliver exceptional performance in the training of generative AI models, such as large language and diffusion models. Users can experience cost savings of up to 50% in training expenses compared to other Amazon EC2 instances. These Trn2 instances can accommodate as many as 16 Trainium2 accelerators, boasting an impressive compute power of up to 3 petaflops using FP16/BF16 and 512 GB of high-bandwidth memory. For enhanced data and model parallelism, they are built with NeuronLink, a high-speed, nonblocking interconnect, and offer a substantial network bandwidth of up to 1600 Gbps via the second-generation Elastic Fabric Adapter (EFAv2). Trn2 instances are part of EC2 UltraClusters, which allow for scaling up to 30,000 interconnected Trainium2 chips within a nonblocking petabit-scale network, achieving a remarkable 6 exaflops of compute capability. Additionally, the AWS Neuron SDK provides seamless integration with widely used machine learning frameworks, including PyTorch and TensorFlow, making these instances a powerful choice for developers and researchers alike. This combination of cutting-edge technology and cost efficiency positions Trn2 instances as a leading option in the realm of high-performance deep learning.
  • 12
    Bright Cluster Manager Reviews
    Bright Cluster Manager offers a variety of machine learning frameworks including Torch, Tensorflow and Tensorflow to simplify your deep-learning projects. Bright offers a selection the most popular Machine Learning libraries that can be used to access datasets. These include MLPython and NVIDIA CUDA Deep Neural Network Library (cuDNN), Deep Learning GPU Trainer System (DIGITS), CaffeOnSpark (a Spark package that allows deep learning), and MLPython. Bright makes it easy to find, configure, and deploy all the necessary components to run these deep learning libraries and frameworks. There are over 400MB of Python modules to support machine learning packages. We also include the NVIDIA hardware drivers and CUDA (parallel computer platform API) drivers, CUB(CUDA building blocks), NCCL (library standard collective communication routines).
  • 13
    Amazon EC2 Capacity Blocks for ML Reviews
    Amazon EC2 Capacity Blocks for Machine Learning allow users to secure accelerated computing instances within Amazon EC2 UltraClusters specifically for their machine learning tasks. This service encompasses a variety of instance types, including Amazon EC2 P5en, P5e, P5, and P4d, which utilize NVIDIA H200, H100, and A100 Tensor Core GPUs, along with Trn2 and Trn1 instances that leverage AWS Trainium. Users can reserve these instances for periods of up to six months, with cluster sizes ranging from a single instance to 64 instances, translating to a maximum of 512 GPUs or 1,024 Trainium chips, thus providing ample flexibility to accommodate diverse machine learning workloads. Additionally, reservations can be arranged as much as eight weeks ahead of time. By operating within Amazon EC2 UltraClusters, Capacity Blocks facilitate low-latency and high-throughput network connectivity, which is essential for efficient distributed training processes. This configuration guarantees reliable access to high-performance computing resources, empowering you to confidently plan your machine learning projects, conduct experiments, develop prototypes, and effectively handle anticipated increases in demand for machine learning applications. Furthermore, this strategic approach not only enhances productivity but also optimizes resource utilization for varying project scales.
  • 14
    Intel Tiber AI Cloud Reviews
    The Intel® Tiber™ AI Cloud serves as a robust platform tailored to efficiently scale artificial intelligence workloads through cutting-edge computing capabilities. Featuring specialized AI hardware, including the Intel Gaudi AI Processor and Max Series GPUs, it enhances the processes of model training, inference, and deployment. Aimed at enterprise-level applications, this cloud offering allows developers to create and refine models using well-known libraries such as PyTorch. Additionally, with a variety of deployment choices, secure private cloud options, and dedicated expert assistance, Intel Tiber™ guarantees smooth integration and rapid deployment while boosting model performance significantly. This comprehensive solution is ideal for organizations looking to harness the full potential of AI technologies.
  • 15
    QumulusAI Reviews
    QumulusAI provides unparalleled supercomputing capabilities, merging scalable high-performance computing (HPC) with autonomous data centers to eliminate bottlenecks and propel the advancement of AI. By democratizing access to AI supercomputing, QumulusAI dismantles the limitations imposed by traditional HPC and offers the scalable, high-performance solutions that modern AI applications require now and in the future. With no virtualization latency and no disruptive neighbors, users gain dedicated, direct access to AI servers that are fine-tuned with the latest NVIDIA GPUs (H200) and cutting-edge Intel/AMD CPUs. Unlike legacy providers that utilize a generic approach, QumulusAI customizes HPC infrastructure to align specifically with your unique workloads. Our partnership extends through every phase—from design and deployment to continuous optimization—ensuring that your AI initiatives receive precisely what they need at every stage of development. We maintain ownership of the entire technology stack, which translates to superior performance, enhanced control, and more predictable expenses compared to other providers that rely on third-party collaborations. This comprehensive approach positions QumulusAI as a leader in the supercomputing space, ready to adapt to the evolving demands of your projects.
  • 16
    AWS Inferentia Reviews
    AWS Inferentia accelerators, engineered by AWS, aim to provide exceptional performance while minimizing costs for deep learning (DL) inference tasks. The initial generation of AWS Inferentia accelerators supports Amazon Elastic Compute Cloud (Amazon EC2) Inf1 instances, boasting up to 2.3 times greater throughput and a 70% reduction in cost per inference compared to similar GPU-based Amazon EC2 instances. Numerous companies, such as Airbnb, Snap, Sprinklr, Money Forward, and Amazon Alexa, have embraced Inf1 instances and experienced significant advantages in both performance and cost. Each first-generation Inferentia accelerator is equipped with 8 GB of DDR4 memory along with a substantial amount of on-chip memory. The subsequent Inferentia2 model enhances capabilities by providing 32 GB of HBM2e memory per accelerator, quadrupling the total memory and decoupling the memory bandwidth, which is ten times greater than its predecessor. This evolution in technology not only optimizes the processing power but also significantly improves the efficiency of deep learning applications across various sectors.
  • 17
    AWS Neuron Reviews
    It enables efficient training on Amazon Elastic Compute Cloud (Amazon EC2) Trn1 instances powered by AWS Trainium. Additionally, for model deployment, it facilitates both high-performance and low-latency inference utilizing AWS Inferentia-based Amazon EC2 Inf1 instances along with AWS Inferentia2-based Amazon EC2 Inf2 instances. With the Neuron SDK, users can leverage widely-used frameworks like TensorFlow and PyTorch to effectively train and deploy machine learning (ML) models on Amazon EC2 Trn1, Inf1, and Inf2 instances with minimal alterations to their code and no reliance on vendor-specific tools. The integration of the AWS Neuron SDK with these frameworks allows for seamless continuation of existing workflows, requiring only minor code adjustments to get started. For those involved in distributed model training, the Neuron SDK also accommodates libraries such as Megatron-LM and PyTorch Fully Sharded Data Parallel (FSDP), enhancing its versatility and scalability for various ML tasks. By providing robust support for these frameworks and libraries, it significantly streamlines the process of developing and deploying advanced machine learning solutions.
  • 18
    Google Cloud GPUs Reviews
    Accelerate computational tasks such as those found in machine learning and high-performance computing (HPC) with a diverse array of GPUs suited for various performance levels and budget constraints. With adaptable pricing and customizable machines, you can fine-tune your setup to enhance your workload efficiency. Google Cloud offers high-performance GPUs ideal for machine learning, scientific analyses, and 3D rendering. The selection includes NVIDIA K80, P100, P4, T4, V100, and A100 GPUs, providing a spectrum of computing options tailored to meet different cost and performance requirements. You can effectively balance processor power, memory capacity, high-speed storage, and up to eight GPUs per instance to suit your specific workload needs. Enjoy the advantage of per-second billing, ensuring you only pay for the resources consumed during usage. Leverage GPU capabilities on Google Cloud Platform, where you benefit from cutting-edge storage, networking, and data analytics solutions. Compute Engine allows you to easily integrate GPUs into your virtual machine instances, offering an efficient way to enhance processing power. Explore the potential uses of GPUs and discover the various types of GPU hardware available to elevate your computational projects.
  • 19
    NVIDIA Run:ai Reviews
    NVIDIA Run:ai is a cutting-edge platform that streamlines AI workload orchestration and GPU resource management to accelerate AI development and deployment at scale. It dynamically pools GPU resources across hybrid clouds, private data centers, and public clouds to optimize compute efficiency and workload capacity. The solution offers unified AI infrastructure management with centralized control and policy-driven governance, enabling enterprises to maximize GPU utilization while reducing operational costs. Designed with an API-first architecture, Run:ai integrates seamlessly with popular AI frameworks and tools, providing flexible deployment options from on-premises to multi-cloud environments. Its open-source KAI Scheduler offers developers simple and flexible Kubernetes scheduling capabilities. Customers benefit from accelerated AI training and inference with reduced bottlenecks, leading to faster innovation cycles. Run:ai is trusted by organizations seeking to scale AI initiatives efficiently while maintaining full visibility and control. This platform empowers teams to transform resource management into a strategic advantage with zero manual effort.
  • 20
    Nebius Reviews
    A robust platform optimized for training is equipped with NVIDIA® H100 Tensor Core GPUs, offering competitive pricing and personalized support. Designed to handle extensive machine learning workloads, it allows for efficient multihost training across thousands of H100 GPUs interconnected via the latest InfiniBand network, achieving speeds of up to 3.2Tb/s per host. Users benefit from significant cost savings, with at least a 50% reduction in GPU compute expenses compared to leading public cloud services*, and additional savings are available through GPU reservations and bulk purchases. To facilitate a smooth transition, we promise dedicated engineering support that guarantees effective platform integration while optimizing your infrastructure and deploying Kubernetes. Our fully managed Kubernetes service streamlines the deployment, scaling, and management of machine learning frameworks, enabling multi-node GPU training with ease. Additionally, our Marketplace features a variety of machine learning libraries, applications, frameworks, and tools designed to enhance your model training experience. New users can take advantage of a complimentary one-month trial period, ensuring they can explore the platform's capabilities effortlessly. This combination of performance and support makes it an ideal choice for organizations looking to elevate their machine learning initiatives.
  • 21
    Lambda GPU Cloud Reviews
    Train advanced models in AI, machine learning, and deep learning effortlessly. With just a few clicks, you can scale your computing resources from a single machine to a complete fleet of virtual machines. Initiate or expand your deep learning endeavors using Lambda Cloud, which allows you to quickly get started, reduce computing expenses, and seamlessly scale up to hundreds of GPUs when needed. Each virtual machine is equipped with the latest version of Lambda Stack, featuring prominent deep learning frameworks and CUDA® drivers. In mere seconds, you can access a dedicated Jupyter Notebook development environment for every machine directly through the cloud dashboard. For immediate access, utilize the Web Terminal within the dashboard or connect via SSH using your provided SSH keys. By creating scalable compute infrastructure tailored specifically for deep learning researchers, Lambda is able to offer substantial cost savings. Experience the advantages of cloud computing's flexibility without incurring exorbitant on-demand fees, even as your workloads grow significantly. This means you can focus on your research and projects without being hindered by financial constraints.
  • 22
    Civo Reviews

    Civo

    Civo

    $250 per month
    Civo is a cloud-native service provider focused on delivering fast, simple, and cost-effective cloud infrastructure for modern applications and AI workloads. The platform features managed Kubernetes clusters with rapid 90-second launch times, helping developers accelerate development cycles and scale with ease. Alongside Kubernetes, Civo offers compute instances, managed databases, object storage, load balancers, and high-performance cloud GPUs powered by NVIDIA A100, including environmentally friendly carbon-neutral options. Their pricing is predictable and pay-as-you-go, ensuring transparency and no surprises for businesses. Civo supports machine learning workloads with fully managed auto-scaling environments starting at $250 per month, eliminating the need for ML or Kubernetes expertise. The platform includes comprehensive dashboards and developer tools, backed by strong compliance certifications such as ISO27001 and SOC2. Civo also invests in community education through its Academy, meetups, and extensive documentation. With trusted partnerships and real-world case studies, Civo helps businesses innovate faster while controlling infrastructure costs.
  • 23
    Google Cloud Deep Learning VM Image Reviews
    Quickly set up a virtual machine on Google Cloud for your deep learning project using the Deep Learning VM Image, which simplifies the process of launching a VM with essential AI frameworks on Google Compute Engine. This solution allows you to initiate Compute Engine instances that come equipped with popular libraries such as TensorFlow, PyTorch, and scikit-learn, eliminating concerns over software compatibility. Additionally, you have the flexibility to incorporate Cloud GPU and Cloud TPU support effortlessly. The Deep Learning VM Image is designed to support both the latest and most widely used machine learning frameworks, ensuring you have access to cutting-edge tools like TensorFlow and PyTorch. To enhance the speed of your model training and deployment, these images are optimized with the latest NVIDIA® CUDA-X AI libraries and drivers, as well as the Intel® Math Kernel Library. By using this service, you can hit the ground running with all necessary frameworks, libraries, and drivers pre-installed and validated for compatibility. Furthermore, the Deep Learning VM Image provides a smooth notebook experience through its integrated support for JupyterLab, facilitating an efficient workflow for your data science tasks. This combination of features makes it an ideal solution for both beginners and experienced practitioners in the field of machine learning.
  • 24
    Ori GPU Cloud Reviews
    Deploy GPU-accelerated instances that can be finely tuned to suit your AI requirements and financial plan. Secure access to thousands of GPUs within a cutting-edge AI data center, ideal for extensive training and inference operations. The trend in the AI landscape is clearly leaning towards GPU cloud solutions, allowing for the creation and deployment of innovative models while alleviating the challenges associated with infrastructure management and resource limitations. AI-focused cloud providers significantly surpass conventional hyperscalers in terms of availability, cost efficiency, and the ability to scale GPU usage for intricate AI tasks. Ori boasts a diverse array of GPU types, each designed to meet specific processing demands, which leads to a greater availability of high-performance GPUs compared to standard cloud services. This competitive edge enables Ori to deliver increasingly attractive pricing each year, whether for pay-as-you-go instances or dedicated servers. In comparison to the hourly or usage-based rates of traditional cloud providers, our GPU computing expenses are demonstrably lower for running extensive AI operations. Additionally, this cost-effectiveness makes Ori a compelling choice for businesses seeking to optimize their AI initiatives.
  • 25
    CloudPe Reviews

    CloudPe

    Leapswitch Networks

    ₹931/month
    CloudPe, a global provider of cloud solutions, offers scalable and secure cloud technology tailored to businesses of all sizes. CloudPe is a joint venture between Leapswitch Networks, Strad Solutions and combines industry expertise to deliver innovative solutions. Key Offerings: Virtual Machines: High performance VMs for various business requirements, including hosting websites and building applications. GPU Instances - NVIDIA GPUs for AI and machine learning. High-performance computing is also available. Kubernetes-as-a-Service: Simplified container orchestration for deploying and managing containerized applications efficiently. S3-Compatible storage: Highly scalable, cost-effective storage solution. Load balancers: Intelligent load-balancing to distribute traffic equally across resources and ensure fast and reliable performance. Why choose CloudPe? 1. Reliability 2. Cost Efficiency 3. Instant Deployment
  • 26
    Voltage Park Reviews

    Voltage Park

    Voltage Park

    $1.99 per hour
    Voltage Park stands as a pioneer in GPU cloud infrastructure, delivering both on-demand and reserved access to cutting-edge NVIDIA HGX H100 GPUs, which are integrated within Dell PowerEdge XE9680 servers that boast 1TB of RAM and v52 CPUs. Their infrastructure is supported by six Tier 3+ data centers strategically located throughout the U.S., providing unwavering availability and reliability through redundant power, cooling, network, fire suppression, and security systems. A sophisticated 3200 Gbps InfiniBand network ensures swift communication and minimal latency between GPUs and workloads, enhancing overall performance. Voltage Park prioritizes top-notch security and compliance, employing Palo Alto firewalls alongside stringent measures such as encryption, access controls, monitoring, disaster recovery strategies, penetration testing, and periodic audits. With an impressive inventory of 24,000 NVIDIA H100 Tensor Core GPUs at their disposal, Voltage Park facilitates a scalable computing environment, allowing clients to access anywhere from 64 to 8,176 GPUs as needed, thereby accommodating a wide range of workloads and applications. Their commitment to innovation and customer satisfaction positions Voltage Park as a leading choice for businesses seeking advanced GPU solutions.
  • 27
    TensorWave Reviews
    TensorWave is a cloud platform designed for AI and high-performance computing (HPC), exclusively utilizing AMD Instinct Series GPUs to ensure optimal performance. It features a high-bandwidth and memory-optimized infrastructure that seamlessly scales to accommodate even the most rigorous training or inference tasks. Users can access AMD’s leading GPUs in mere seconds, including advanced models like the MI300X and MI325X, renowned for their exceptional memory capacity and bandwidth, boasting up to 256GB of HBM3E and supporting speeds of 6.0TB/s. Additionally, TensorWave's architecture is equipped with UEC-ready functionalities that enhance the next generation of Ethernet for AI and HPC networking, as well as direct liquid cooling systems that significantly reduce total cost of ownership, achieving energy cost savings of up to 51% in data centers. The platform also incorporates high-speed network storage, which provides transformative performance, security, and scalability for AI workflows. Furthermore, it ensures seamless integration with a variety of tools and platforms, accommodating various models and libraries to enhance user experience. TensorWave stands out for its commitment to performance and efficiency in the evolving landscape of AI technology.
  • 28
    Amazon S3 Express One Zone Reviews
    Amazon S3 Express One Zone is designed as a high-performance storage class that operates within a single Availability Zone, ensuring reliable access to frequently used data and meeting the demands of latency-sensitive applications with single-digit millisecond response times. It boasts data retrieval speeds that can be up to 10 times quicker, alongside request costs that can be reduced by as much as 50% compared to the S3 Standard class. Users have the flexibility to choose a particular AWS Availability Zone in an AWS Region for their data, which enables the co-location of storage and computing resources, ultimately enhancing performance and reducing compute expenses while expediting workloads. The data is managed within a specialized bucket type known as an S3 directory bucket, which can handle hundreds of thousands of requests every second efficiently. Furthermore, S3 Express One Zone can seamlessly integrate with services like Amazon SageMaker Model Training, Amazon Athena, Amazon EMR, and AWS Glue Data Catalog, thereby speeding up both machine learning and analytical tasks. This combination of features makes S3 Express One Zone an attractive option for businesses looking to optimize their data management and processing capabilities.
  • 29
    GMI Cloud Reviews

    GMI Cloud

    GMI Cloud

    $2.50 per hour
    Create your generative AI solutions in just a few minutes with GMI GPU Cloud. GMI Cloud goes beyond simple bare metal offerings by enabling you to train, fine-tune, and run cutting-edge models seamlessly. Our clusters come fully prepared with scalable GPU containers and widely-used ML frameworks, allowing for immediate access to the most advanced GPUs tailored for your AI tasks. Whether you seek flexible on-demand GPUs or dedicated private cloud setups, we have the perfect solution for you. Optimize your GPU utility with our ready-to-use Kubernetes software, which simplifies the process of allocating, deploying, and monitoring GPUs or nodes through sophisticated orchestration tools. You can customize and deploy models tailored to your data, enabling rapid development of AI applications. GMI Cloud empowers you to deploy any GPU workload swiftly and efficiently, allowing you to concentrate on executing ML models instead of handling infrastructure concerns. Launching pre-configured environments saves you valuable time by eliminating the need to build container images, install software, download models, and configure environment variables manually. Alternatively, you can utilize your own Docker image to cater to specific requirements, ensuring flexibility in your development process. With GMI Cloud, you'll find that the path to innovative AI applications is smoother and faster than ever before.
  • 30
    Azure HPC Reviews
    Azure offers high-performance computing (HPC) solutions that drive innovative breakthroughs, tackle intricate challenges, and enhance your resource-heavy tasks. You can create and execute your most demanding applications in the cloud with a comprehensive solution specifically designed for HPC. Experience the benefits of supercomputing capabilities, seamless interoperability, and nearly limitless scalability for compute-heavy tasks through Azure Virtual Machines. Enhance your decision-making processes and advance next-generation AI applications using Azure's top-tier AI and analytics services. Additionally, protect your data and applications while simplifying compliance through robust, multilayered security measures and confidential computing features. This powerful combination ensures that organizations can achieve their computational goals with confidence and efficiency.
  • 31
    XRCLOUD Reviews

    XRCLOUD

    XRCLOUD

    $4.13 per month
    GPU cloud computing is a service leveraging GPU technology to provide high-speed, real-time parallel and floating-point computing capabilities. This service is particularly well-suited for diverse applications, including 3D graphics rendering, video processing, deep learning, and scientific research. Users can easily manage GPU instances in a manner similar to standard ECS, significantly alleviating computational burdens. The RTX6000 GPU features thousands of computing units, demonstrating impressive efficiency in parallel processing tasks. For enhanced deep learning capabilities, it offers rapid completion of extensive computations. Additionally, GPU Direct facilitates seamless transmission of large data sets across networks. With an integrated acceleration framework, it enables quick deployment and efficient distribution of instances, allowing users to focus on essential tasks. We provide exceptional performance in the cloud at clear and competitive pricing. Furthermore, our pricing model is transparent and budget-friendly, offering options for on-demand billing, along with opportunities for increased savings through resource subscriptions. This flexibility ensures that users can optimize their cloud resources according to their specific needs and budget.
  • 32
    Nimbix Supercomputing Suite Reviews
    The Nimbix Supercomputing Suite offers a diverse and secure range of high-performance computing (HPC) solutions available as a service. This innovative model enables users to tap into a comprehensive array of HPC and supercomputing resources, spanning from hardware options to bare metal-as-a-service, facilitating the widespread availability of advanced computing capabilities across both public and private data centers. Through the Nimbix Supercomputing Suite, users gain access to the HyperHub Application Marketplace, which features an extensive selection of over 1,000 applications and workflows designed for high performance. By utilizing dedicated BullSequana HPC servers as bare metal-as-a-service, clients can enjoy superior infrastructure along with the flexibility of on-demand scalability, convenience, and agility. Additionally, the federated supercomputing-as-a-service provides a centralized service console, enabling efficient management of all computing zones and regions within a public or private HPC, AI, and supercomputing federation, thereby streamlining operations and enhancing productivity. This comprehensive suite empowers organizations to drive innovation and optimize performance across various computational tasks.
  • 33
    JarvisLabs.ai Reviews

    JarvisLabs.ai

    JarvisLabs.ai

    $1,440 per month
    All necessary infrastructure, computing resources, and software tools (such as Cuda and various frameworks) have been established for you to train and implement your preferred deep-learning models seamlessly. You can easily launch GPU or CPU instances right from your web browser or automate the process using our Python API for greater efficiency. This flexibility ensures that you can focus on model development without worrying about the underlying setup.
  • 34
    AWS Deep Learning AMIs Reviews
    AWS Deep Learning AMIs (DLAMI) offer machine learning professionals and researchers a secure and curated collection of frameworks, tools, and dependencies to enhance deep learning capabilities in cloud environments. Designed for both Amazon Linux and Ubuntu, these Amazon Machine Images (AMIs) are pre-equipped with popular frameworks like TensorFlow, PyTorch, Apache MXNet, Chainer, Microsoft Cognitive Toolkit (CNTK), Gluon, Horovod, and Keras, enabling quick deployment and efficient operation of these tools at scale. By utilizing these resources, you can create sophisticated machine learning models for the development of autonomous vehicle (AV) technology, thoroughly validating your models with millions of virtual tests. The setup and configuration process for AWS instances is expedited, facilitating faster experimentation and assessment through access to the latest frameworks and libraries, including Hugging Face Transformers. Furthermore, the incorporation of advanced analytics, machine learning, and deep learning techniques allows for the discovery of trends and the generation of predictions from scattered and raw health data, ultimately leading to more informed decision-making. This comprehensive ecosystem not only fosters innovation but also enhances operational efficiency across various applications.
  • 35
    Fabric for Deep Learning (FfDL) Reviews
    Deep learning frameworks like TensorFlow, PyTorch, Caffe, Torch, Theano, and MXNet have significantly enhanced the accessibility of deep learning by simplifying the design, training, and application of deep learning models. Fabric for Deep Learning (FfDL, pronounced “fiddle”) offers a standardized method for deploying these deep-learning frameworks as a service on Kubernetes, ensuring smooth operation. The architecture of FfDL is built on microservices, which minimizes the interdependence between components, promotes simplicity, and maintains a stateless nature for each component. This design choice also helps to isolate failures, allowing for independent development, testing, deployment, scaling, and upgrading of each element. By harnessing the capabilities of Kubernetes, FfDL delivers a highly scalable, resilient, and fault-tolerant environment for deep learning tasks. Additionally, the platform incorporates a distribution and orchestration layer that enables efficient learning from large datasets across multiple compute nodes within a manageable timeframe. This comprehensive approach ensures that deep learning projects can be executed with both efficiency and reliability.
  • 36
    CUDO Compute Reviews

    CUDO Compute

    CUDO Compute

    $1.73 per hour
    CUDO Compute is an advanced cloud platform for high-performance GPU computing that is specifically tailored for artificial intelligence applications, featuring both on-demand and reserved clusters that can efficiently scale to meet user needs. Users have the option to utilize a diverse array of powerful GPUs from a global selection, including top models like the NVIDIA H100 SXM, H100 PCIe, and a variety of other high-performance graphics cards such as the A800 PCIe and RTX A6000. This platform enables users to launch instances in a matter of seconds, granting them comprehensive control to execute AI workloads quickly while ensuring they can scale operations globally and adhere to necessary compliance standards. Additionally, CUDO Compute provides adaptable virtual machines suited for agile computing tasks, making it an excellent choice for development, testing, and lightweight production scenarios, complete with minute-based billing, rapid NVMe storage, and extensive customization options. For teams that demand direct access to hardware, dedicated bare metal servers are also available, maximizing performance without the overhead of virtualization, thus enhancing efficiency for resource-intensive applications. This combination of features makes CUDO Compute a compelling choice for organizations looking to leverage the power of AI in their operations.
  • 37
    Qubrid AI Reviews

    Qubrid AI

    Qubrid AI

    $0.68/hour/GPU
    Qubrid AI stands out as a pioneering company in the realm of Artificial Intelligence (AI), dedicated to tackling intricate challenges across various sectors. Their comprehensive software suite features AI Hub, a centralized destination for AI models, along with AI Compute GPU Cloud and On-Prem Appliances, and the AI Data Connector. Users can develop both their own custom models and utilize industry-leading inference models, all facilitated through an intuitive and efficient interface. The platform allows for easy testing and refinement of models, followed by a smooth deployment process that enables users to harness the full potential of AI in their initiatives. With AI Hub, users can commence their AI journey, transitioning seamlessly from idea to execution on a robust platform. The cutting-edge AI Compute system maximizes efficiency by leveraging the capabilities of GPU Cloud and On-Prem Server Appliances, making it easier to innovate and execute next-generation AI solutions. The dedicated Qubrid team consists of AI developers, researchers, and partnered experts, all committed to continually enhancing this distinctive platform to propel advancements in scientific research and applications. Together, they aim to redefine the future of AI technology across multiple domains.
  • 38
    Deci Reviews
    Effortlessly create, refine, and deploy high-performing, precise models using Deci’s deep learning development platform, which utilizes Neural Architecture Search. Achieve superior accuracy and runtime performance that surpass state-of-the-art models for any application and inference hardware in no time. Accelerate your path to production with automated tools, eliminating the need for endless iterations and a multitude of libraries. This platform empowers new applications on devices with limited resources or helps reduce cloud computing expenses by up to 80%. With Deci’s NAS-driven AutoNAC engine, you can automatically discover architectures that are both accurate and efficient, specifically tailored to your application, hardware, and performance goals. Additionally, streamline the process of compiling and quantizing your models with cutting-edge compilers while quickly assessing various production configurations. This innovative approach not only enhances productivity but also ensures that your models are optimized for any deployment scenario.
  • 39
    NVIDIA DGX Cloud Lepton Reviews
    NVIDIA DGX Cloud Lepton is an advanced AI platform that facilitates connections for developers to a worldwide network of GPU computing resources across various cloud providers, all through a singular interface. It provides a cohesive experience for discovering and leveraging GPU capabilities, complemented by integrated AI services that enhance the deployment lifecycle across multiple cloud environments. With immediate access to NVIDIA's accelerated APIs, developers can begin their projects using serverless endpoints and prebuilt NVIDIA Blueprints, along with GPU-enabled computing. When scaling becomes necessary, DGX Cloud Lepton ensures smooth customization and deployment through its expansive global network of GPU cloud providers. Furthermore, it allows for effortless deployment across any GPU cloud, enabling AI applications to operate within multi-cloud and hybrid settings while minimizing operational complexities, and it leverages integrated services designed for inference, testing, and training workloads. This versatility ultimately empowers developers to focus on innovation without worrying about the underlying infrastructure.
  • 40
    NVIDIA HPC SDK Reviews
    The NVIDIA HPC Software Development Kit (SDK) offers a comprehensive suite of reliable compilers, libraries, and software tools that are crucial for enhancing developer efficiency as well as the performance and adaptability of HPC applications. This SDK includes C, C++, and Fortran compilers that facilitate GPU acceleration for HPC modeling and simulation applications through standard C++ and Fortran, as well as OpenACC® directives and CUDA®. Additionally, GPU-accelerated mathematical libraries boost the efficiency of widely used HPC algorithms, while optimized communication libraries support standards-based multi-GPU and scalable systems programming. The inclusion of performance profiling and debugging tools streamlines the process of porting and optimizing HPC applications, and containerization tools ensure straightforward deployment whether on-premises or in cloud environments. Furthermore, with compatibility for NVIDIA GPUs and various CPU architectures like Arm, OpenPOWER, or x86-64 running on Linux, the HPC SDK equips developers with all the necessary resources to create high-performance GPU-accelerated HPC applications effectively. Ultimately, this robust toolkit is indispensable for anyone looking to push the boundaries of high-performance computing.
  • 41
    NVIDIA DIGITS Reviews
    The NVIDIA Deep Learning GPU Training System (DIGITS) empowers engineers and data scientists by making deep learning accessible and efficient. With DIGITS, users can swiftly train highly precise deep neural networks (DNNs) tailored for tasks like image classification, segmentation, and object detection. It streamlines essential deep learning processes, including data management, neural network design, multi-GPU training, real-time performance monitoring through advanced visualizations, and selecting optimal models for deployment from the results browser. The interactive nature of DIGITS allows data scientists to concentrate on model design and training instead of getting bogged down with programming and debugging. Users can train models interactively with TensorFlow while also visualizing the model architecture via TensorBoard. Furthermore, DIGITS supports the integration of custom plug-ins, facilitating the importation of specialized data formats such as DICOM, commonly utilized in medical imaging. This comprehensive approach ensures that engineers can maximize their productivity while leveraging advanced deep learning techniques.
  • 42
    TFLearn Reviews
    TFlearn is a flexible and clear deep learning framework that operates on top of TensorFlow. Its primary aim is to offer a more user-friendly API for TensorFlow, which accelerates the experimentation process while ensuring complete compatibility and clarity with the underlying framework. The library provides an accessible high-level interface for developing deep neural networks, complete with tutorials and examples for guidance. It facilitates rapid prototyping through its modular design, which includes built-in neural network layers, regularizers, optimizers, and metrics. Users benefit from full transparency regarding TensorFlow, as all functions are tensor-based and can be utilized independently of TFLearn. Additionally, it features robust helper functions to assist in training any TensorFlow graph, accommodating multiple inputs, outputs, and optimization strategies. The graph visualization is user-friendly and aesthetically pleasing, offering insights into weights, gradients, activations, and more. Moreover, the high-level API supports a wide range of contemporary deep learning architectures, encompassing Convolutions, LSTM, BiRNN, BatchNorm, PReLU, Residual networks, and Generative networks, making it a versatile tool for researchers and developers alike.
  • 43
    AWS ParallelCluster Reviews
    AWS ParallelCluster is a free, open-source tool designed for efficient management and deployment of High-Performance Computing (HPC) clusters within the AWS environment. It streamlines the configuration of essential components such as compute nodes, shared filesystems, and job schedulers, while accommodating various instance types and job submission queues. Users have the flexibility to engage with ParallelCluster using a graphical user interface, command-line interface, or API, which allows for customizable cluster setups and oversight. The tool also works seamlessly with job schedulers like AWS Batch and Slurm, making it easier to transition existing HPC workloads to the cloud with minimal adjustments. Users incur no additional costs for the tool itself, only paying for the AWS resources their applications utilize. With AWS ParallelCluster, users can effectively manage their computing needs through a straightforward text file that allows for the modeling, provisioning, and dynamic scaling of necessary resources in a secure and automated fashion. This ease of use significantly enhances productivity and optimizes resource allocation for various computational tasks.
  • 44
    AWS HPC Reviews
    AWS High Performance Computing (HPC) services enable users to run extensive simulations and deep learning tasks in the cloud, offering nearly limitless computing power, advanced file systems, and high-speed networking capabilities. This comprehensive set of services fosters innovation by providing a diverse array of cloud-based resources, such as machine learning and analytics tools, which facilitate swift design and evaluation of new products. Users can achieve peak operational efficiency thanks to the on-demand nature of these computing resources, allowing them to concentrate on intricate problem-solving without the limitations of conventional infrastructure. AWS HPC offerings feature the Elastic Fabric Adapter (EFA) for optimized low-latency and high-bandwidth networking, AWS Batch for efficient scaling of computing tasks, AWS ParallelCluster for easy cluster setup, and Amazon FSx for delivering high-performance file systems. Collectively, these services create a flexible and scalable ecosystem that is well-suited for a variety of HPC workloads, empowering organizations to push the boundaries of what’s possible in their respective fields. As a result, users can experience greatly enhanced performance and productivity in their computational endeavors.
  • 45
    NVIDIA Modulus Reviews
    NVIDIA Modulus is an advanced neural network framework that integrates the principles of physics, represented through governing partial differential equations (PDEs), with data to create accurate, parameterized surrogate models that operate with near-instantaneous latency. This framework is ideal for those venturing into AI-enhanced physics challenges or for those crafting digital twin models to navigate intricate non-linear, multi-physics systems, offering robust support throughout the process. It provides essential components for constructing physics-based machine learning surrogate models that effectively merge physics principles with data insights. Its versatility ensures applicability across various fields, including engineering simulations and life sciences, while accommodating both forward simulations and inverse/data assimilation tasks. Furthermore, NVIDIA Modulus enables parameterized representations of systems that can tackle multiple scenarios in real time, allowing users to train offline once and subsequently perform real-time inference repeatedly. As such, it empowers researchers and engineers to explore innovative solutions across a spectrum of complex problems with unprecedented efficiency.