Best AlxBlock Alternatives in 2025

Find the top alternatives to AlxBlock currently available. Compare ratings, reviews, pricing, and features of AlxBlock alternatives in 2025. Slashdot lists the best AlxBlock alternatives on the market that offer competing products that are similar to AlxBlock. Sort through AlxBlock alternatives below to make the best choice for your needs

  • 1
    BentoML Reviews
    Your ML model can be served in minutes in any cloud. Unified model packaging format that allows online and offline delivery on any platform. Our micro-batching technology allows for 100x more throughput than a regular flask-based server model server. High-quality prediction services that can speak the DevOps language, and seamlessly integrate with common infrastructure tools. Unified format for deployment. High-performance model serving. Best practices in DevOps are incorporated. The service uses the TensorFlow framework and the BERT model to predict the sentiment of movie reviews. DevOps-free BentoML workflow. This includes deployment automation, prediction service registry, and endpoint monitoring. All this is done automatically for your team. This is a solid foundation for serious ML workloads in production. Keep your team's models, deployments and changes visible. You can also control access via SSO and RBAC, client authentication and auditing logs.
  • 2
    Union Cloud Reviews
    Union.ai Benefits: - Accelerated Data Processing & ML: Union.ai significantly speeds up data processing and machine learning. - Built on Trusted Open-Source: Leverages the robust open-source project Flyte™, ensuring a reliable and tested foundation for your ML projects. - Kubernetes Efficiency: Harnesses the power and efficiency of Kubernetes along with enhanced observability and enterprise features. - Optimized Infrastructure: Facilitates easier collaboration among Data and ML teams on optimized infrastructures, boosting project velocity. - Breaks Down Silos: Tackles the challenges of distributed tooling and infrastructure by simplifying work-sharing across teams and environments with reusable tasks, versioned workflows, and an extensible plugin system. - Seamless Multi-Cloud Operations: Navigate the complexities of on-prem, hybrid, or multi-cloud setups with ease, ensuring consistent data handling, secure networking, and smooth service integrations. - Cost Optimization: Keeps a tight rein on your compute costs, tracks usage, and optimizes resource allocation even across distributed providers and instances, ensuring cost-effectiveness.
  • 3
    TensorFlow Reviews
    Open source platform for machine learning. TensorFlow is a machine learning platform that is open-source and available to all. It offers a flexible, comprehensive ecosystem of tools, libraries, and community resources that allows researchers to push the boundaries of machine learning. Developers can easily create and deploy ML-powered applications using its tools. Easy ML model training and development using high-level APIs such as Keras. This allows for quick model iteration and debugging. No matter what language you choose, you can easily train and deploy models in cloud, browser, on-prem, or on-device. It is a simple and flexible architecture that allows you to quickly take new ideas from concept to code to state-of the-art models and publication. TensorFlow makes it easy to build, deploy, and test.
  • 4
    Amazon SageMaker Reviews
    Amazon SageMaker, a fully managed service, provides data scientists and developers with the ability to quickly build, train, deploy, and deploy machine-learning (ML) models. SageMaker takes the hard work out of each step in the machine learning process, making it easier to create high-quality models. Traditional ML development can be complex, costly, and iterative. This is made worse by the lack of integrated tools to support the entire machine learning workflow. It is tedious and error-prone to combine tools and workflows. SageMaker solves the problem by combining all components needed for machine learning into a single toolset. This allows models to be produced faster and with less effort. Amazon SageMaker Studio is a web-based visual interface that allows you to perform all ML development tasks. SageMaker Studio allows you to have complete control over each step and gives you visibility.
  • 5
    Tencent Cloud TI Platform Reviews
    Tencent Cloud TI Platform, a machine learning platform for AI engineers, is a one stop shop. It supports AI development at every stage, from data preprocessing, to model building, to model training, to model evaluation, as well as model service. It is preconfigured with diverse algorithms components and supports multiple algorithm frameworks for adapting to different AI use-cases. Tencent Cloud TI Platform offers a machine learning experience in a single-stop shop. It covers a closed-loop workflow, from data preprocessing, to model building, training and evaluation. Tencent Cloud TI Platform allows even AI beginners to have their models automatically constructed, making the entire training process much easier. Tencent Cloud TI Platform’s auto-tuning feature can also improve the efficiency of parameter optimization. Tencent Cloud TI Platform enables CPU/GPU resources that can elastically respond with flexible billing methods to different computing power requirements.
  • 6
    Simplismart Reviews
    Simplismart’s fastest inference engine allows you to fine-tune and deploy AI model with ease. Integrate with AWS/Azure/GCP, and many other cloud providers, for simple, scalable and cost-effective deployment. Import open-source models from popular online repositories, or deploy your custom model. Simplismart can host your model or you can use your own cloud resources. Simplismart allows you to go beyond AI model deployment. You can train, deploy and observe any ML models and achieve increased inference speed at lower costs. Import any dataset to fine-tune custom or open-source models quickly. Run multiple training experiments efficiently in parallel to speed up your workflow. Deploy any model to our endpoints, or your own VPC/premises and enjoy greater performance at lower cost. Now, streamlined and intuitive deployments are a reality. Monitor GPU utilization, and all of your node clusters on one dashboard. On the move, detect any resource constraints or model inefficiencies.
  • 7
    PyTorch Reviews
    TorchScript allows you to seamlessly switch between graph and eager modes. TorchServe accelerates the path to production. The torch-distributed backend allows for distributed training and performance optimization in production and research. PyTorch is supported by a rich ecosystem of libraries and tools that supports NLP, computer vision, and other areas. PyTorch is well-supported on major cloud platforms, allowing for frictionless development and easy scaling. Select your preferences, then run the install command. Stable is the most current supported and tested version of PyTorch. This version should be compatible with many users. Preview is available for those who want the latest, but not fully tested, and supported 1.10 builds that are generated every night. Please ensure you have met the prerequisites, such as numpy, depending on which package manager you use. Anaconda is our preferred package manager, as it installs all dependencies.
  • 8
    Azure Machine Learning Reviews
    Accelerate the entire machine learning lifecycle. Developers and data scientists can have more productive experiences building, training, and deploying machine-learning models faster by empowering them. Accelerate time-to-market and foster collaboration with industry-leading MLOps -DevOps machine learning. Innovate on a trusted platform that is secure and trustworthy, which is designed for responsible ML. Productivity for all levels, code-first and drag and drop designer, and automated machine-learning. Robust MLOps capabilities integrate with existing DevOps processes to help manage the entire ML lifecycle. Responsible ML capabilities – understand models with interpretability, fairness, and protect data with differential privacy, confidential computing, as well as control the ML cycle with datasheets and audit trials. Open-source languages and frameworks supported by the best in class, including MLflow and Kubeflow, ONNX and PyTorch. TensorFlow and Python are also supported.
  • 9
    Google Cloud Vertex AI Workbench Reviews
    One development environment for all data science workflows. Natively analyze your data without the need to switch between services. Data to training at scale Models can be built and trained 5X faster than traditional notebooks. Scale up model development using simple connectivity to Vertex AI Services. Access to data is simplified and machine learning is made easier with BigQuery Dataproc, Spark and Vertex AI integration. Vertex AI training allows you to experiment and prototype at scale. Vertex AI Workbench allows you to manage your training and deployment workflows for Vertex AI all from one location. Fully managed, scalable and enterprise-ready, Jupyter-based, fully managed, scalable, and managed compute infrastructure with security controls. Easy connections to Google Cloud's Big Data Solutions allow you to explore data and train ML models.
  • 10
    Zerve AI Reviews
    With a fully automated cloud infrastructure, experts can explore data and write stable codes at the same time. Zerve’s data science environment gives data scientists and ML teams a unified workspace to explore, collaborate and build data science & AI project like never before. Zerve provides true language interoperability. Users can use Python, R SQL or Markdown in the same canvas and connect these code blocks. Zerve offers unlimited parallelization, allowing for code blocks and containers to run in parallel at any stage of development. Analysis artifacts can be automatically serialized, stored and preserved. This allows you to change a step without having to rerun previous steps. Selecting compute resources and memory in a fine-grained manner for complex data transformation.
  • 11
    Teachable Machine Reviews
    It's fast and easy to create machine learning models for websites, apps, and other applications. Teachable Machine is flexible. You can use files or capture live examples. It respects your work. You can even use it entirely on-device without having to leave any microphone or webcam data. Teachable Machine, a web-based tool, makes it easy to create machine learning models. Artists, educators, students, innovators, and makers of all types - anyone with an idea to explore. There is no need to have any prior machine learning knowledge. Without writing any machine learning code, you can train a computer how to recognize your images, sounds, poses, and sounds. You can then use your model in your own sites, apps, and other projects.
  • 12
    MosaicML Reviews
    With a single command, you can train and serve large AI models in scale. You can simply point to your S3 bucket. We take care of the rest: orchestration, efficiency and node failures. Simple and scalable. MosaicML allows you to train and deploy large AI model on your data in a secure environment. Keep up with the latest techniques, recipes, and foundation models. Our research team has developed and rigorously tested these recipes. In just a few easy steps, you can deploy your private cloud. Your data and models will never leave the firewalls. You can start in one cloud and continue in another without missing a beat. Own the model trained on your data. Model decisions can be better explained by examining them. Filter content and data according to your business needs. Integrate seamlessly with your existing data pipelines and experiment trackers. We are cloud-agnostic and enterprise-proven.
  • 13
    Snorkel AI Reviews
    AI is today blocked by a lack of labeled data. Not models. The first data-centric AI platform powered by a programmatic approach will unblock AI. With its unique programmatic approach, Snorkel AI is leading a shift from model-centric AI development to data-centric AI. By replacing manual labeling with programmatic labeling, you can save time and money. You can quickly adapt to changing data and business goals by changing code rather than manually re-labeling entire datasets. Rapid, guided iteration of the training data is required to develop and deploy AI models of high quality. Versioning and auditing data like code leads to faster and more ethical deployments. By collaborating on a common interface, which provides the data necessary to train models, subject matter experts can be integrated. Reduce risk and ensure compliance by labeling programmatically, and not sending data to external annotators.
  • 14
    Alibaba Cloud Machine Learning Platform for AI Reviews
    A platform that offers a variety of machine learning algorithms to meet data mining and analysis needs. Machine Learning Platform for AI offers end-to-end machine-learning services, including data processing and feature engineering, model prediction, model training, model evaluation, and model prediction. Machine learning platform for AI integrates all these services to make AI easier than ever. Machine Learning Platform for AI offers a visual web interface that allows you to create experiments by dragging components onto the canvas. Machine learning modeling is a step-by-step process that improves efficiency and reduces costs when creating experiments. Machine Learning Platform for AI offers more than 100 algorithm components. These include text analysis, finance, classification, clustering and time series.
  • 15
    VESSL AI Reviews

    VESSL AI

    VESSL AI

    $100 + compute/month
    Fully managed infrastructure, tools and workflows allow you to build, train and deploy models faster. Scale inference and deploy custom AI & LLMs in seconds on any infrastructure. Schedule batch jobs to handle your most demanding tasks, and only pay per second. Optimize costs by utilizing GPUs, spot instances, and automatic failover. YAML simplifies complex infrastructure setups by allowing you to train with a single command. Automate the scaling up of workers during periods of high traffic, and scaling down to zero when inactive. Deploy cutting edge models with persistent endpoints within a serverless environment to optimize resource usage. Monitor system and inference metrics, including worker counts, GPU utilization, throughput, and latency in real-time. Split traffic between multiple models to evaluate.
  • 16
    DeepSpeed Reviews
    DeepSpeed is a deep learning optimization library that is open source for PyTorch. It is designed to reduce memory and computing power, and to train large distributed model with better parallelism using existing computer hardware. DeepSpeed is optimized to provide high throughput and low latency training. DeepSpeed can train DL-models with more than 100 billion parameters using the current generation GPU clusters. It can also train as many as 13 billion parameters on a single GPU. DeepSpeed, developed by Microsoft, aims to provide distributed training for large models. It's built using PyTorch which is a data parallelism specialist.
  • 17
    Daria Reviews
    Daria's advanced automated features enable users to quickly and easily create predictive models. This significantly reduces the time and effort required to build them. Eliminate technological and financial barriers to building AI systems from scratch for businesses. Automated machine learning for data professionals can streamline and speed up workflows, reducing the amount of iterative work required. An intuitive GUI for data science beginners gives you hands-on experience with machine learning. Daria offers various data transformation functions that allow you to quickly create multiple feature sets. Daria automatically searches through millions of combinations of algorithms, modeling techniques, and hyperparameters in order to find the best predictive model. Daria's RESTful API allows you to deploy predictive models directly into production.
  • 18
    cnvrg.io Reviews
    An end-to-end solution gives you all the tools your data science team needs to scale your machine learning development, from research to production. cnvrg.io, the world's leading data science platform for MLOps (model management) is a leader in creating cutting-edge machine-learning development solutions that allow you to build high-impact models in half the time. In a collaborative and clear machine learning management environment, bridge science and engineering teams. Use interactive workspaces, dashboards and model repositories to communicate and reproduce results. You should be less concerned about technical complexity and more focused on creating high-impact ML models. The Cnvrg.io container based infrastructure simplifies engineering heavy tasks such as tracking, monitoring and configuration, compute resource management, server infrastructure, feature extraction, model deployment, and serving infrastructure.
  • 19
    Bittensor Reviews
    Bittensor, an open-source protocol, powers a blockchain-based decentralized machine-learning network. Machine learning models are trained collaboratively, and rewarded by TAO based on the informational value that they provide to the collective. TAO also allows external access to the network, allowing users extract information while tuning its activities according to their needs. Our vision is to create an artificial intelligence market, a transparent, open and trustless environment where consumers and producers can interact. A novel, optimized approach to the development and distribution artificial intelligence technology that leverages the capabilities of a distributed ledger. Its facilitation of open ownership and access, decentralized governance and the ability of global computing power and innovation to be harnessed within an incentive framework.
  • 20
    Nyckel Reviews
    Nyckel makes it easy to auto-label images and text using AI. We say ‘easy’ because trying to do classification through complicated AI tools is hard. And confusing. Especially if you don't know machine learning. That’s why Nyckel built a platform that makes image and text classification easy. In just a few minutes, you can train an AI model to identify attributes of any image or text. Our goal is to help anyone spin up an image or text classification model in just minutes, regardless of technical knowledge.
  • 21
    AWS Neuron Reviews
    It supports high-performance learning on AWS Trainium based Amazon Elastic Compute Cloud Trn1 instances. It supports low-latency and high-performance inference for model deployment on AWS Inferentia based Amazon EC2 Inf1 and AWS Inferentia2-based Amazon EC2 Inf2 instance. Neuron allows you to use popular frameworks such as TensorFlow or PyTorch and train and deploy machine-learning (ML) models using Amazon EC2 Trn1, inf1, and inf2 instances without requiring vendor-specific solutions. AWS Neuron SDK is natively integrated into PyTorch and TensorFlow, and supports Inferentia, Trainium, and other accelerators. This integration allows you to continue using your existing workflows within these popular frameworks, and get started by changing only a few lines. The Neuron SDK provides libraries for distributed model training such as Megatron LM and PyTorch Fully Sharded Data Parallel (FSDP).
  • 22
    Amazon EC2 UltraClusters Reviews
    Amazon EC2 UltraClusters allow you to scale up to thousands of GPUs and machine learning accelerators such as AWS trainium, providing access to supercomputing performance on demand. They enable supercomputing to be accessible for ML, generative AI and high-performance computing through a simple, pay-as you-go model, without any setup or maintenance fees. UltraClusters are made up of thousands of accelerated EC2 instance co-located within a specific AWS Availability Zone and interconnected with Elastic Fabric Adapter networking to create a petabit scale non-blocking network. This architecture provides high-performance networking, and access to Amazon FSx, a fully-managed shared storage built on a parallel high-performance file system. It allows rapid processing of large datasets at sub-millisecond latency. EC2 UltraClusters offer scale-out capabilities to reduce training times for distributed ML workloads and tightly coupled HPC workloads.
  • 23
    Kubeflow Reviews
    Kubeflow is a project that makes machine learning (ML), workflows on Kubernetes portable, scalable, and easy to deploy. Our goal is not create new services, but to make it easy to deploy the best-of-breed open source systems for ML to different infrastructures. Kubeflow can be run anywhere Kubernetes is running. Kubeflow offers a custom TensorFlow job operator that can be used to train your ML model. Kubeflow's job manager can handle distributed TensorFlow training jobs. You can configure the training controller to use GPUs or CPUs, and to adapt to different cluster sizes. Kubeflow provides services to create and manage interactive Jupyter Notebooks. You can adjust your notebook deployment and compute resources to meet your data science requirements. You can experiment with your workflows locally and then move them to the cloud when you are ready.
  • 24
    Ray Reviews
    You can develop on your laptop, then scale the same Python code elastically across hundreds or GPUs on any cloud. Ray converts existing Python concepts into the distributed setting, so any serial application can be easily parallelized with little code changes. With a strong ecosystem distributed libraries, scale compute-heavy machine learning workloads such as model serving, deep learning, and hyperparameter tuning. Scale existing workloads (e.g. Pytorch on Ray is easy to scale by using integrations. Ray Tune and Ray Serve native Ray libraries make it easier to scale the most complex machine learning workloads like hyperparameter tuning, deep learning models training, reinforcement learning, and training deep learning models. In just 10 lines of code, you can get started with distributed hyperparameter tune. Creating distributed apps is hard. Ray is an expert in distributed execution.
  • 25
    Hugging Face Reviews

    Hugging Face

    Hugging Face

    $9 per month
    AutoTrain is a new way to automatically evaluate, deploy and train state-of-the art Machine Learning models. AutoTrain, seamlessly integrated into the Hugging Face ecosystem, is an automated way to develop and deploy state of-the-art Machine Learning model. Your account is protected from all data, including your training data. All data transfers are encrypted. Today's options include text classification, text scoring and entity recognition. Files in CSV, TSV, or JSON can be hosted anywhere. After training is completed, we delete all training data. Hugging Face also has an AI-generated content detection tool.
  • 26
    Amazon EC2 Trn2 Instances Reviews
    Amazon EC2 Trn2 instances powered by AWS Trainium2 are designed for high-performance deep-learning training of generative AI model, including large language models, diffusion models, and diffusion models. They can save up to 50% on the cost of training compared to comparable Amazon EC2 Instances. Trn2 instances can support up to 16 Trainium2 accelerations, delivering up to 3 petaflops FP16/BF16 computing power and 512GB of high bandwidth memory. Trn2 instances support up to 1600 Gbps second-generation Elastic Fabric Adapter network bandwidth. NeuronLink is a high-speed nonblocking interconnect that facilitates efficient data and models parallelism. They are deployed as EC2 UltraClusters and can scale up to 30,000 Trainium2 processors interconnected by a nonblocking, petabit-scale, network, delivering six exaflops in compute performance. The AWS neuron SDK integrates with popular machine-learning frameworks such as PyTorch or TensorFlow.
  • 27
    IBM Watson Studio Reviews
    You can build, run, and manage AI models and optimize decisions across any cloud. IBM Watson Studio allows you to deploy AI anywhere with IBM Cloud Pak®, the IBM data and AI platform. Open, flexible, multicloud architecture allows you to unite teams, simplify the AI lifecycle management, and accelerate time-to-value. ModelOps pipelines automate the AI lifecycle. AutoAI accelerates data science development. AutoAI allows you to create and programmatically build models. One-click integration allows you to deploy and run models. Promoting AI governance through fair and explicable AI. Optimizing decisions can improve business results. Open source frameworks such as PyTorch and TensorFlow can be used, as well as scikit-learn. You can combine the development tools, including popular IDEs and Jupyter notebooks. JupterLab and CLIs. This includes languages like Python, R, and Scala. IBM Watson Studio automates the management of the AI lifecycle to help you build and scale AI with trust.
  • 28
    IBM Watson Machine Learning Reviews
    IBM Watson Machine Learning, a full-service IBM Cloud offering, makes it easy for data scientists and developers to work together to integrate predictive capabilities into their applications. The Machine Learning service provides a set REST APIs that can be called from any programming language. This allows you to create applications that make better decisions, solve difficult problems, and improve user outcomes. Machine learning models management (continuous-learning system) and deployment (online batch, streaming, or online) are available. You can choose from any of the widely supported machine-learning frameworks: TensorFlow and Keras, Caffe or PyTorch. Spark MLlib, scikit Learn, xgboost, SPSS, Spark MLlib, Keras, Caffe and Keras. To manage your artifacts, you can use the Python client and command-line interface. The Watson Machine Learning REST API allows you to extend your application with artificial intelligence.
  • 29
    Predibase Reviews
    Declarative machine-learning systems offer the best combination of flexibility and simplicity, allowing for the fastest way to implement state-of-the art models. The system works by asking users to specify the "what" and then the system will figure out the "how". Start with smart defaults and iterate down to the code level on parameters. With Ludwig at Uber, and Overton from Apple, our team pioneered declarative machine-learning systems in industry. You can choose from our pre-built data connectors to support your databases, data warehouses and lakehouses as well as object storage. You can train state-of the-art deep learning models without having to manage infrastructure. Automated Machine Learning achieves the right balance between flexibility and control in a declarative manner. You can train and deploy models quickly using a declarative approach.
  • 30
    Striveworks Chariot Reviews
    Make AI an integral part of your business. With the flexibility and power of a cloud native platform, you can build better, deploy faster and audit easier. Import models and search cataloged model from across your organization. Save time by quickly annotating data with model-in the-loop hinting. Flyte's integration with Chariot allows you to quickly create and launch custom workflows. Understand the full origin of your data, models and workflows. Deploy models wherever you need them. This includes edge and IoT applications. Data scientists are not the only ones who can get valuable insights from their data. With Chariot's low code interface, teams can collaborate effectively.
  • 31
    Lightning AI Reviews

    Lightning AI

    Lightning AI

    $10 per credit
    Our platform allows you to create AI products, train, fine-tune, and deploy models on the cloud. You don't have to worry about scaling, infrastructure, cost management, or other technical issues. Prebuilt, fully customizable modular components make it easy to train, fine tune, and deploy models. The science, not the engineering, should be your focus. Lightning components organize code to run on the cloud and manage its own infrastructure, cloud cost, and other details. 50+ optimizations to lower cloud cost and deliver AI in weeks, not months. Enterprise-grade control combined with consumer-level simplicity allows you to optimize performance, reduce costs, and take on less risk. Get more than a demo. In days, not months, you can launch your next GPT startup, diffusion startup or cloud SaaSML service.
  • 32
    UpTrain Reviews
    Scores are available for factual accuracy and context retrieval, as well as guideline adherence and tonality. You can't improve if you don't measure. UpTrain continuously monitors the performance of your application on multiple evaluation criteria and alerts you if there are any regressions. UpTrain allows for rapid and robust experimentation with multiple prompts and model providers. Since their inception, LLMs have been plagued by hallucinations. UpTrain quantifies the degree of hallucination, and the quality of context retrieved. This helps detect responses that are not factually accurate and prevents them from being served to end users.
  • 33
    Deeploy Reviews
    Deeploy allows you to maintain control over your ML models. You can easily deploy your models to our responsible AI platform without compromising transparency, control and compliance. Transparency, explainability and security of AI models are more important today than ever. You can monitor the performance of your models with confidence and accountability if you use a safe, secure environment. Over the years, our experience has shown us the importance of human interaction with machine learning. Only when machine-learning systems are transparent and accountable can experts and consumers provide feedback, overrule their decisions when necessary, and grow their trust. We created Deeploy for this reason.
  • 34
    Xilinx Reviews
    The Xilinx AI development platform for AI Inference on Xilinx hardware platforms consists optimized IP, tools and libraries, models, examples, and models. It was designed to be efficient and easy-to-use, allowing AI acceleration on Xilinx FPGA or ACAP. Supports mainstream frameworks as well as the most recent models that can perform diverse deep learning tasks. A comprehensive collection of pre-optimized models is available for deployment on Xilinx devices. Find the closest model to your application and begin retraining! This powerful open-source quantizer supports model calibration, quantization, and fine tuning. The AI profiler allows you to analyze layers in order to identify bottlenecks. The AI library provides open-source high-level Python and C++ APIs that allow maximum portability from the edge to the cloud. You can customize the IP cores to meet your specific needs for many different applications.
  • 35
    WhyLabs Reviews
    Observability allows you to detect data issues and ML problems faster, to deliver continuous improvements and to avoid costly incidents. Start with reliable data. Monitor data in motion for quality issues. Pinpoint data and models drift. Identify the training-serving skew, and proactively retrain. Monitor key performance metrics continuously to detect model accuracy degradation. Identify and prevent data leakage in generative AI applications. Protect your generative AI apps from malicious actions. Improve AI applications by using user feedback, monitoring and cross-team collaboration. Integrate in just minutes with agents that analyze raw data, without moving or replicating it. This ensures privacy and security. Use the proprietary privacy-preserving technology to integrate the WhyLabs SaaS Platform with any use case. Security approved by healthcare and banks.
  • 36
    Xero.AI Reviews

    Xero.AI

    Xero.AI

    $30 per month
    Build an AI-powered machine-learning engineer to handle all of your data science and ML requirements. Xero’s artificial analyst is the next step in data science and ML. Ask Xara to do something with your data. Explore your data, create custom visuals and generate insights using natural language. Cleanse and transform your data to extract new features as seamlessly as possible. XARA allows you to create, train and test machine learning models that are completely customizable.
  • 37
    Gradio Reviews
    Create & Share Delightful Apps for Machine Learning. Gradio allows you to quickly and easily demo your machine-learning model. It has a friendly interface that anyone can use, anywhere. Installing Gradio is easy with pip. It only takes a few lines of code to create a Gradio Interface. You can choose between a variety interface types to interface with your function. Gradio is available as a webpage or embedded into Python notebooks. Gradio can generate a link that you can share publicly with colleagues to allow them to interact with your model remotely using their own devices. Once you have created an interface, it can be permanently hosted on Hugging Face. Hugging Face Spaces hosts the interface on their servers and provides you with a shareable link.
  • 38
    Kolena Reviews
    The list is not exhaustive. Our solution engineers will work with your team to customize Kolena to your workflows and business metrics. The aggregate metrics do not tell the whole story. Unexpected model behavior is the norm. The current testing processes are manual and error-prone. They also cannot be repeated. Models are evaluated based on arbitrary statistics that do not align with product objectives. It is difficult to track model improvement as data evolves. Techniques that are adequate for research environments do not meet the needs of production.
  • 39
    vishwa.ai Reviews

    vishwa.ai

    vishwa.ai

    $39 per month
    Vishwa.ai, an AutoOps Platform for AI and ML Use Cases. It offers expert delivery, fine-tuning and monitoring of Large Language Models. Features: Expert Prompt Delivery : Tailored prompts tailored to various applications. Create LLM Apps without Coding: Create LLM workflows with our drag-and-drop UI. Advanced Fine-Tuning : Customization AI models. LLM Monitoring: Comprehensive monitoring of model performance. Integration and Security Cloud Integration: Supports Google Cloud (AWS, Azure), Azure, and Google Cloud. Secure LLM Integration - Safe connection with LLM providers Automated Observability for efficient LLM Management Managed Self Hosting: Dedicated hosting solutions. Access Control and Audits - Ensure secure and compliant operations.
  • 40
    ScoopML Reviews
    It's easy to build advanced predictive models with no math or coding in just a few clicks. The Complete Experience We provide everything you need, from cleaning data to building models to forecasting, and everything in between. Trustworthy. Learn the "why" behind AI decisions to drive business with actionable insight. Data Analytics in minutes without having to write code. In one click, you can complete the entire process of building ML algorithms, explaining results and predicting future outcomes. Machine Learning in 3 Steps You can go from raw data to actionable insights without writing a single line code. Upload your data. Ask questions in plain English Find the best model for your data. Share your results. Increase customer productivity We assist companies to use no code Machine Learning to improve their Customer Experience.
  • 41
    Obviously AI Reviews

    Obviously AI

    Obviously AI

    $75 per month
    All the steps involved in building machine learning algorithms and predicting results, all in one click. Data Dialog allows you to easily shape your data without having to wrangle your files. Your prediction reports can be shared with your team members or made public. Let anyone make predictions on your model. Our low-code API allows you to integrate dynamic ML predictions directly into your app. Real-time prediction of willingness to pay, score leads, and many other things. AI gives you access to the most advanced algorithms in the world, without compromising on performance. Forecast revenue, optimize supply chain, personalize your marketing. Now you can see what the next steps are. In minutes, you can add a CSV file or integrate with your favorite data sources. Select your prediction column from the dropdown and we'll automatically build the AI. Visualize the top drivers, predicted results, and simulate "what-if?" scenarios.
  • 42
    IBM Watson OpenScale Reviews
    IBM Watson OpenScale provides visibility into the creation and use of AI-powered applications in an enterprise-scale environment. It also allows businesses to see how ROI is delivered. IBM Watson OpenScale provides visibility to companies about how AI is created, used, and how ROI is delivered at business level. You can create and deploy trusted AI using the IDE you prefer, and provide data insights to your business and support team about how AI affects business results. Capture payload data, deployment output, and alerts to monitor the health of business applications. You can also access an open data warehouse for custom reporting and access to operations dashboards. Based on business-determined fairness attributes, automatically detects when artificial Intelligence systems produce incorrect results at runtime. Smart recommendations of new data to improve model training can reduce bias.
  • 43
    PredictSense Reviews
    PredictSense is an AI-powered machine learning platform that uses AutoML to power its end-to-end Machine Learning platform. Accelerating machine intelligence will fuel the technological revolution of tomorrow. AI is key to unlocking the value of enterprise data investments. PredictSense allows businesses to quickly create AI-driven advanced analytical solutions that can help them monetize their technology investments and critical data infrastructure. Data science and business teams can quickly develop and deploy robust technology solutions at scale. Integrate AI into your existing product ecosystem and quickly track GTM for new AI solution. AutoML's complex ML models allow you to save significant time, money and effort.
  • 44
    Emly Labs Reviews
    Emly Labs, an AI framework, is designed to make AI accessible to users of all technical levels via a user-friendly interface. It offers AI project-management with tools that automate workflows for faster execution. The platform promotes team collaboration, innovation, and data preparation without code. It also integrates external data to create robust AI models. Emly AutoML automates model evaluation and data processing, reducing the need for human input. It prioritizes transparency with AI features that are easily explained and robust auditing to ensure compliance. Data isolation, role-based accessibility, and secure integrations are all security measures. Emly's cost effective infrastructure allows for on-demand resource provisioning, policy management and risk reduction.
  • 45
    Amazon EC2 Capacity Blocks for ML Reviews
    Amazon EC2 capacity blocks for ML allow you to reserve accelerated compute instance in Amazon EC2 UltraClusters that are dedicated to machine learning workloads. This service supports Amazon EC2 P5en instances powered by NVIDIA Tensor Core GPUs H200, H100 and A100, as well Trn2 and TRn1 instances powered AWS Trainium. You can reserve these instances up to six months ahead of time in cluster sizes from one to sixty instances (512 GPUs, or 1,024 Trainium chip), providing flexibility for ML workloads. Reservations can be placed up to 8 weeks in advance. Capacity Blocks can be co-located in Amazon EC2 UltraClusters to provide low-latency and high-throughput connectivity for efficient distributed training. This setup provides predictable access to high performance computing resources. It allows you to plan ML application development confidently, run tests, build prototypes and accommodate future surges of demand for ML applications.
  • 46
    Amazon SageMaker Model Training Reviews
    Amazon SageMaker Model training reduces the time and costs of training and tuning machine learning (ML), models at scale, without the need for infrastructure management. SageMaker automatically scales infrastructure up or down from one to thousands of GPUs. This allows you to take advantage of the most performant ML compute infrastructure available. You can control your training costs better because you only pay for what you use. SageMaker distributed libraries can automatically split large models across AWS GPU instances. You can also use third-party libraries like DeepSpeed, Horovod or Megatron to speed up deep learning models. You can efficiently manage your system resources using a variety of GPUs and CPUs, including P4d.24xl instances. These are the fastest training instances available in the cloud. Simply specify the location of the data and indicate the type of SageMaker instances to get started.
  • 47
    Tenstorrent DevCloud Reviews
    Tenstorrent DevCloud was created to allow people to test their models on our servers, without having to purchase our hardware. Tenstorrent AI is being built in the cloud to allow programmers to test our AI solutions. After logging in, your first login is free. You can then connect with our team to better assess your needs. Tenstorrent is a group of motivated and competent people who have come together to create the best computing platform for AI/software 2.0. Tenstorrent is a new-generation computing company that aims to address the rapidly increasing computing needs for software 2.0. Tenstorrent is based in Toronto, Canada. It brings together experts in the fields of computer architecture, basic design and neural network compilers. ur processors have been optimized for neural network training and inference. They can also perform other types of parallel computation. Tenstorrent processors are made up of a grid consisting of Tensix cores.
  • 48
    Monster API Reviews
    Our auto-scaling AIs allow you to access powerful generative AIs models without any management. API calls are now available for generative AI models such as stable diffusion, dreambooth and pix2pix. Our scalable Rest APIs allow you to build applications on top of generative AI models. They integrate seamlessly and cost a fraction of what other alternatives do. Integrations that are seamless with your existing systems without extensive development. Our APIs are easy to integrate into your workflow, with support for stacks such as CURL, Python Node.js, and PHP. We harness the computing power of millions decentralised crypto mining machines around the world, optimize them for machine-learning and package them with popular AI models such as Stable Diffusion. We can deliver Generative AI through APIs that are easily integrated and scalable by leveraging these decentralized resources.
  • 49
    Devron Reviews
    Machine learning can be applied to distributed data to provide faster insights and better results without the long lead times, high concentration risk, or privacy concerns associated with centralizing data. Access to diverse, high-quality data sources is often a limitation of machine learning algorithms' effectiveness. You can gain more insight by unlocking more data and making it transparent about the impact of each dataset model. It takes time to get approvals, centralize data, and build out infrastructure. You can train models faster by using data right where it is while parallelizing and federating the training process. Devron allows you to access data in situ without the need to mask or anonymize. This greatly reduces the overhead of data extraction, transformation, loading, and storage.
  • 50
    Nebius Reviews
    Platform with NVIDIA H100 Tensor core GPUs. Competitive pricing. Support from a dedicated team. Built for large-scale ML workloads. Get the most from multihost training with thousands of H100 GPUs in full mesh connections using the latest InfiniBand networks up to 3.2Tb/s. Best value: Save up to 50% on GPU compute when compared with major public cloud providers*. You can save even more by purchasing GPUs in large quantities and reserving GPUs. Onboarding assistance: We provide a dedicated engineer to ensure smooth platform adoption. Get your infrastructure optimized, and k8s installed. Fully managed Kubernetes - Simplify the deployment and scaling of ML frameworks using Kubernetes. Use Managed Kubernetes to train GPUs on multiple nodes. Marketplace with ML Frameworks: Browse our Marketplace to find ML-focused libraries and applications, frameworks, and tools that will streamline your model training. Easy to use. All new users are entitled to a one-month free trial.