Best Aiven for Apache Kafka Alternatives in 2025

Find the top alternatives to Aiven for Apache Kafka currently available. Compare ratings, reviews, pricing, and features of Aiven for Apache Kafka alternatives in 2025. Slashdot lists the best Aiven for Apache Kafka alternatives on the market that offer competing products that are similar to Aiven for Apache Kafka. Sort through Aiven for Apache Kafka alternatives below to make the best choice for your needs

  • 1
    MongoDB Atlas Reviews
    See Software
    Learn More
    Compare Both
    MongoDB Atlas stands out as the leading cloud database service available, offering unparalleled data distribution and seamless mobility across all major platforms, including AWS, Azure, and Google Cloud. Its built-in automation tools enhance resource management and workload optimization, making it the go-to choice for modern application deployment. As a fully managed service, it ensures best-in-class automation and adheres to established practices that support high availability, scalability, and compliance with stringent data security and privacy regulations. Furthermore, MongoDB Atlas provides robust security controls tailored for your data needs, allowing for the integration of enterprise-grade features that align with existing security protocols and compliance measures. With preconfigured elements for authentication, authorization, and encryption, you can rest assured that your data remains secure and protected at all times. Ultimately, MongoDB Atlas not only simplifies deployment and scaling in the cloud but also fortifies your data with comprehensive security features that adapt to evolving requirements.
  • 2
    Amazon MSK Reviews

    Amazon MSK

    Amazon

    $0.0543 per hour
    Amazon Managed Streaming for Apache Kafka (Amazon MSK) simplifies the process of creating and operating applications that leverage Apache Kafka for handling streaming data. As an open-source framework, Apache Kafka enables the construction of real-time data pipelines and applications. Utilizing Amazon MSK allows you to harness the native APIs of Apache Kafka for various tasks, such as populating data lakes, facilitating data exchange between databases, and fueling machine learning and analytical solutions. However, managing Apache Kafka clusters independently can be quite complex, requiring tasks like server provisioning, manual configuration, and handling server failures. Additionally, you must orchestrate updates and patches, design the cluster to ensure high availability, secure and durably store data, establish monitoring systems, and strategically plan for scaling to accommodate fluctuating workloads. By utilizing Amazon MSK, you can alleviate many of these burdens and focus more on developing your applications rather than managing the underlying infrastructure.
  • 3
    kPow Reviews

    kPow

    Factor House

    $2,650 per cluster per year
    We know how simple Apache Kafka®, can be when you have the right tools. kPow was created to simplify the Kafka development experience and save businesses time and money. kPow makes it easy to find the root cause of production problems in a matter of clicks and not hours. With kPow's Data Inspect and kREPL functions, you can search tens of thousands messages per second. Are you new to Kafka kPow's Kafka UI is unique and allows developers to quickly understand the core Kafka concepts. You can upskill new members of your team and increase your Kafka knowledge. kPow offers a range of Kafka management features and monitoring capabilities in a single Docker Container. You can manage multiple clusters and schema registries. Connect installs with one instance.
  • 4
    IBM Event Streams Reviews
    IBM Event Streams is a comprehensive event streaming service based on Apache Kafka, aimed at assisting businesses in managing and reacting to real-time data flows. It offers features such as machine learning integration, high availability, and secure deployment in the cloud, empowering organizations to develop smart applications that respond to events in real time. The platform is designed to accommodate multi-cloud infrastructures, disaster recovery options, and geo-replication, making it particularly suitable for critical operational tasks. By facilitating the construction and scaling of real-time, event-driven solutions, IBM Event Streams ensures that data is processed with speed and efficiency, ultimately enhancing business agility and responsiveness. As a result, organizations can harness the power of real-time data to drive innovation and improve decision-making processes.
  • 5
    Azure Event Hubs Reviews
    Event Hubs provides a fully managed service for real-time data ingestion that is easy to use, reliable, and highly scalable. It enables the streaming of millions of events every second from various sources, facilitating the creation of dynamic data pipelines that allow businesses to quickly address challenges. In times of crisis, you can continue data processing thanks to its geo-disaster recovery and geo-replication capabilities. Additionally, it integrates effortlessly with other Azure services, enabling users to derive valuable insights. Existing Apache Kafka clients can communicate with Event Hubs without requiring code alterations, offering a managed Kafka experience while eliminating the need to maintain individual clusters. Users can enjoy both real-time data ingestion and microbatching on the same stream, allowing them to concentrate on gaining insights rather than managing infrastructure. By leveraging Event Hubs, organizations can rapidly construct real-time big data pipelines and swiftly tackle business issues as they arise, enhancing their operational efficiency.
  • 6
    Axual Reviews
    Axual provides a Kafka-as-a-Service tailored for DevOps teams, empowering them to extract insights and make informed decisions through our user-friendly Kafka platform. For enterprises seeking to effortlessly incorporate data streaming into their essential IT frameworks, Axual presents the perfect solution. Our comprehensive Kafka platform is crafted to remove the necessity for deep technical expertise, offering a ready-made service that allows users to enjoy the advantages of event streaming without complications. The Axual Platform serves as an all-encompassing solution, aimed at simplifying and improving the deployment, management, and use of real-time data streaming with Apache Kafka. With a robust suite of features designed to meet the varied demands of contemporary businesses, the Axual Platform empowers organizations to fully leverage the capabilities of data streaming while reducing complexity and minimizing operational burdens. Additionally, our platform ensures that your team can focus on innovation rather than getting bogged down by technical challenges.
  • 7
    Apache Kafka Reviews

    Apache Kafka

    The Apache Software Foundation

    1 Rating
    Apache Kafka® is a robust, open-source platform designed for distributed streaming. It can scale production environments to accommodate up to a thousand brokers, handling trillions of messages daily and managing petabytes of data with hundreds of thousands of partitions. The system allows for elastic growth and reduction of both storage and processing capabilities. Furthermore, it enables efficient cluster expansion across availability zones or facilitates the interconnection of distinct clusters across various geographic locations. Users can process event streams through features such as joins, aggregations, filters, transformations, and more, all while utilizing event-time and exactly-once processing guarantees. Kafka's built-in Connect interface seamlessly integrates with a wide range of event sources and sinks, including Postgres, JMS, Elasticsearch, AWS S3, among others. Additionally, developers can read, write, and manipulate event streams using a diverse selection of programming languages, enhancing the platform's versatility and accessibility. This extensive support for various integrations and programming environments makes Kafka a powerful tool for modern data architectures.
  • 8
    Red Hat OpenShift Streams Reviews
    Red Hat® OpenShift® Streams for Apache Kafka is a cloud-managed service designed to enhance the developer experience for creating, deploying, and scaling cloud-native applications, as well as for modernizing legacy systems. This service simplifies the processes of creating, discovering, and connecting to real-time data streams, regardless of their deployment location. Streams play a crucial role in the development of event-driven applications and data analytics solutions. By enabling seamless operations across distributed microservices and handling large data transfer volumes with ease, it allows teams to leverage their strengths, accelerate their time to value, and reduce operational expenses. Additionally, OpenShift Streams for Apache Kafka features a robust Kafka ecosystem and is part of a broader suite of cloud services within the Red Hat OpenShift product family, empowering users to develop a diverse array of data-driven applications. With its powerful capabilities, this service ultimately supports organizations in navigating the complexities of modern software development.
  • 9
    Confluent Reviews
    Achieve limitless data retention for Apache Kafka® with Confluent, empowering you to be infrastructure-enabled rather than constrained by outdated systems. Traditional technologies often force a choice between real-time processing and scalability, but event streaming allows you to harness both advantages simultaneously, paving the way for innovation and success. Have you ever considered how your rideshare application effortlessly analyzes vast datasets from various sources to provide real-time estimated arrival times? Or how your credit card provider monitors millions of transactions worldwide, promptly alerting users to potential fraud? The key to these capabilities lies in event streaming. Transition to microservices and facilitate your hybrid approach with a reliable connection to the cloud. Eliminate silos to ensure compliance and enjoy continuous, real-time event delivery. The possibilities truly are limitless, and the potential for growth is unprecedented.
  • 10
    Google Cloud Managed Service for Kafka Reviews
    Google Cloud's Managed Service for Apache Kafka is an efficient and scalable solution that streamlines the deployment, oversight, and upkeep of Apache Kafka clusters. By automating essential operational functions like provisioning, scaling, and patching, it allows developers to concentrate on application development without the burdens of managing infrastructure. The service guarantees high reliability and availability through data replication across various zones, thus mitigating the risks of potential outages. Additionally, it integrates effortlessly with other Google Cloud offerings, enabling the creation of comprehensive data processing workflows. Security measures are robust, featuring encryption for both stored and transmitted data, along with identity and access management, and network isolation to keep information secure. Users can choose between public and private networking setups, allowing for diverse connectivity options that cater to different requirements. This flexibility ensures that businesses can adapt the service to meet their specific operational needs efficiently.
  • 11
    Conduktor Reviews
    We developed Conduktor, a comprehensive and user-friendly interface designed to engage with the Apache Kafka ecosystem seamlessly. Manage and develop Apache Kafka with assurance using Conduktor DevTools, your all-in-one desktop client tailored for Apache Kafka, which helps streamline workflows for your entire team. Learning and utilizing Apache Kafka can be quite challenging, but as enthusiasts of Kafka, we have crafted Conduktor to deliver an exceptional user experience that resonates with developers. Beyond merely providing an interface, Conduktor empowers you and your teams to take command of your entire data pipeline through our integrations with various technologies associated with Apache Kafka. With Conduktor, you gain access to the most complete toolkit available for working with Apache Kafka, ensuring that your data management processes are efficient and effective. This means you can focus more on innovation while we handle the complexities of your data workflows.
  • 12
    PubSub+ Platform Reviews
    Solace is a specialist in Event-Driven-Architecture (EDA), with two decades of experience providing enterprises with highly reliable, robust and scalable data movement technology based on the publish & subscribe (pub/sub) pattern. Solace technology enables the real-time data flow behind many of the conveniences you take for granted every day such as immediate loyalty rewards from your credit card, the weather data delivered to your mobile phone, real-time airplane movements on the ground and in the air, and timely inventory updates to some of your favourite department stores and grocery chains, not to mention that Solace technology also powers many of the world's leading stock exchanges and betting houses. Aside from rock solid technology, stellar customer support is one of the biggest reasons customers select Solace, and stick with them.
  • 13
    Astra Streaming Reviews
    Engaging applications captivate users while motivating developers to innovate. To meet the growing demands of the digital landscape, consider utilizing the DataStax Astra Streaming service platform. This cloud-native platform for messaging and event streaming is built on the robust foundation of Apache Pulsar. With Astra Streaming, developers can create streaming applications that leverage a multi-cloud, elastically scalable architecture. Powered by the advanced capabilities of Apache Pulsar, this platform offers a comprehensive solution that encompasses streaming, queuing, pub/sub, and stream processing. Astra Streaming serves as an ideal partner for Astra DB, enabling current users to construct real-time data pipelines seamlessly connected to their Astra DB instances. Additionally, the platform's flexibility allows for deployment across major public cloud providers, including AWS, GCP, and Azure, thereby preventing vendor lock-in. Ultimately, Astra Streaming empowers developers to harness the full potential of their data in real-time environments.
  • 14
    Aiven Reviews

    Aiven

    Aiven

    $200.00 per month
    Aiven takes the reins on your open-source data infrastructure hosted in the cloud, allowing you to focus on what you excel at: developing applications. While you channel your energy into innovation, we expertly handle the complexities of managing cloud data infrastructure. Our solutions are entirely open source, providing the flexibility to transfer data between various clouds or establish multi-cloud setups. You will have complete visibility into your expenses, with a clear understanding of costs as we consolidate networking, storage, and basic support fees. Our dedication to ensuring your Aiven software remains operational is unwavering; should any challenges arise, you can count on us to resolve them promptly. You can launch a service on the Aiven platform in just 10 minutes and sign up without needing to provide credit card information. Simply select your desired open-source service along with the cloud and region for deployment, pick a suitable plan—which includes $300 in free credits—and hit "Create service" to begin configuring your data sources. Enjoy the benefits of maintaining control over your data while leveraging robust open-source services tailored to your needs. With Aiven, you can streamline your cloud operations and focus on driving your projects forward.
  • 15
    WarpStream Reviews

    WarpStream

    WarpStream

    $2,987 per month
    WarpStream serves as a data streaming platform that is fully compatible with Apache Kafka, leveraging object storage to eliminate inter-AZ networking expenses and disk management, while offering infinite scalability within your VPC. The deployment of WarpStream occurs through a stateless, auto-scaling agent binary, which operates without the need for local disk management. This innovative approach allows agents to stream data directly to and from object storage, bypassing local disk buffering and avoiding any data tiering challenges. Users can instantly create new “virtual clusters” through our control plane, accommodating various environments, teams, or projects without the hassle of dedicated infrastructure. With its seamless protocol compatibility with Apache Kafka, WarpStream allows you to continue using your preferred tools and software without any need for application rewrites or proprietary SDKs. By simply updating the URL in your Kafka client library, you can begin streaming immediately, ensuring that you never have to compromise between reliability and cost-effectiveness again. Additionally, this flexibility fosters an environment where innovation can thrive without the constraints of traditional infrastructure.
  • 16
    Oracle Cloud Infrastructure Streaming Reviews
    The Streaming service is a real-time, serverless platform for event streaming that is compatible with Apache Kafka, designed specifically for developers and data scientists. It is seamlessly integrated with Oracle Cloud Infrastructure (OCI), Database, GoldenGate, and Integration Cloud. Furthermore, the service offers ready-made integrations with numerous third-party products spanning various categories, including DevOps, databases, big data, and SaaS applications. Data engineers can effortlessly establish and manage extensive big data pipelines. Oracle takes care of all aspects of infrastructure and platform management for event streaming, which encompasses provisioning, scaling, and applying security updates. Additionally, by utilizing consumer groups, Streaming effectively manages state for thousands of consumers, making it easier for developers to create applications that can scale efficiently. This comprehensive approach not only streamlines the development process but also enhances overall operational efficiency.
  • 17
    DataStax Reviews
    Introducing a versatile, open-source multi-cloud platform for contemporary data applications, built on Apache Cassandra™. Achieve global-scale performance with guaranteed 100% uptime while avoiding vendor lock-in. You have the flexibility to deploy on multi-cloud environments, on-premises infrastructures, or use Kubernetes. The platform is designed to be elastic and offers a pay-as-you-go pricing model to enhance total cost of ownership. Accelerate your development process with Stargate APIs, which support NoSQL, real-time interactions, reactive programming, as well as JSON, REST, and GraphQL formats. Bypass the difficulties associated with managing numerous open-source projects and APIs that lack scalability. This solution is perfect for various sectors including e-commerce, mobile applications, AI/ML, IoT, microservices, social networking, gaming, and other highly interactive applications that require dynamic scaling based on demand. Start your journey of creating modern data applications with Astra, a database-as-a-service powered by Apache Cassandra™. Leverage REST, GraphQL, and JSON alongside your preferred full-stack framework. This platform ensures that your richly interactive applications are not only elastic but also ready to gain traction from the very first day, all while offering a cost-effective Apache Cassandra DBaaS that scales seamlessly and affordably as your needs evolve. With this innovative approach, developers can focus on building rather than managing infrastructure.
  • 18
    StreamNative Reviews

    StreamNative

    StreamNative

    $1,000 per month
    StreamNative transforms the landscape of streaming infrastructure by combining Kafka, MQ, and various other protocols into one cohesive platform, which offers unmatched flexibility and efficiency tailored for contemporary data processing requirements. This integrated solution caters to the varied demands of streaming and messaging within microservices architectures. By delivering a holistic and intelligent approach to both messaging and streaming, StreamNative equips organizations with the tools to effectively manage the challenges and scalability of today’s complex data environment. Furthermore, Apache Pulsar’s distinctive architecture separates the message serving component from the message storage segment, creating a robust cloud-native data-streaming platform. This architecture is designed to be both scalable and elastic, allowing for quick adjustments to fluctuating event traffic and evolving business needs, and it can scale up to accommodate millions of topics, ensuring that computation and storage remain decoupled for optimal performance. Ultimately, this innovative design positions StreamNative as a leader in addressing the multifaceted requirements of modern data streaming.
  • 19
    DeltaStream Reviews
    DeltaStream is an integrated serverless streaming processing platform that integrates seamlessly with streaming storage services. Imagine it as a compute layer on top your streaming storage. It offers streaming databases and streaming analytics along with other features to provide an integrated platform for managing, processing, securing and sharing streaming data. DeltaStream has a SQL-based interface that allows you to easily create stream processing apps such as streaming pipelines. It uses Apache Flink, a pluggable stream processing engine. DeltaStream is much more than a query-processing layer on top Kafka or Kinesis. It brings relational databases concepts to the world of data streaming, including namespacing, role-based access control, and enables you to securely access and process your streaming data, regardless of where it is stored.
  • 20
    DoubleCloud Reviews

    DoubleCloud

    DoubleCloud

    $0.024 per 1 GB per month
    Optimize your time and reduce expenses by simplifying data pipelines using hassle-free open source solutions. Covering everything from data ingestion to visualization, all components are seamlessly integrated, fully managed, and exceptionally reliable, ensuring your engineering team enjoys working with data. You can opt for any of DoubleCloud’s managed open source services or take advantage of the entire platform's capabilities, which include data storage, orchestration, ELT, and instantaneous visualization. We offer premier open source services such as ClickHouse, Kafka, and Airflow, deployable on platforms like Amazon Web Services or Google Cloud. Our no-code ELT tool enables real-time data synchronization between various systems, providing a fast, serverless solution that integrates effortlessly with your existing setup. With our managed open-source data visualization tools, you can easily create real-time visual representations of your data through interactive charts and dashboards. Ultimately, our platform is crafted to enhance the daily operations of engineers, making their tasks more efficient and enjoyable. This focus on convenience is what sets us apart in the industry.
  • 21
    IBM Event Automation Reviews
    IBM Event Automation is an entirely flexible, event-driven platform that empowers users to identify opportunities, take immediate action, automate their decision-making processes, and enhance their revenue capabilities. By utilizing Apache Flink, it allows organizations to react swiftly in real time, harnessing artificial intelligence to forecast essential business trends. This solution supports the creation of scalable applications that can adapt to changing business requirements and manage growing workloads effortlessly. It also provides self-service capabilities, accompanied by approval mechanisms, field redaction, and schema filtering, all governed by a Kafka-native event gateway through policy administration. IBM Event Automation streamlines and speeds up event management by implementing policy administration for self-service access, which facilitates the definition of controls for approval workflows, field-level redaction, and schema filtering. Various applications of this technology include analyzing transaction data, optimizing inventory levels, identifying suspicious activities, improving customer insights, and enabling predictive maintenance. This comprehensive approach ensures that businesses can navigate complex environments with agility and precision.
  • 22
    Superstream Reviews
    Superstream: An AI Solution That Lowers Expenses and Boosts Kafka Performance by 75%, With Zero Modifications to Your Current Infrastructure.
  • 23
    SiteWhere Reviews
    SiteWhere utilizes Kubernetes for deploying its infrastructure and microservices, making it versatile for both on-premise setups and virtually any cloud service provider. The system is supported by robust configurations of Apache Kafka, Zookeeper, and Hashicorp Consul, ensuring a reliable infrastructure. Each microservice is designed to scale individually while also enabling seamless integration with others. It presents a comprehensive multitenant IoT ecosystem that encompasses device management, event ingestion, extensive event storage capabilities, REST APIs, data integration, and additional features. The architecture is distributed and developed using Java microservices that operate on Docker, with an Apache Kafka processing pipeline for efficiency. Importantly, SiteWhere CE remains open source, allowing free use for both personal and commercial purposes. Additionally, the SiteWhere team provides free basic support along with a continuous flow of innovative features to enhance the platform's functionality. This emphasis on community-driven development ensures that users can benefit from ongoing improvements and updates.
  • 24
    Yandex Managed Service for Apache Kafka Reviews
    Concentrate on creating applications for processing data streams instead of spending time on infrastructure upkeep. The Managed Service for Apache Kafka takes care of Zookeeper brokers and clusters, handling tasks such as configuring the clusters and performing version updates. To achieve the desired level of fault tolerance, distribute your cluster brokers across multiple availability zones and set an appropriate replication factor. This service continuously monitors the metrics and health of the cluster, automatically replacing any node that fails to ensure uninterrupted service. You can customize various settings for each topic, including the replication factor, log cleanup policy, compression type, and maximum message count, optimizing the use of computing, network, and disk resources. Additionally, enhancing your cluster's performance is as simple as clicking a button to add more brokers, and you can adjust the high-availability hosts without downtime or data loss, allowing for seamless scalability. By utilizing this service, you can ensure that your applications remain efficient and resilient amidst any unforeseen challenges.
  • 25
    Waterstream Reviews
    Waterstream transforms your Kafka-compatible system into a robust MQTT broker, enabling seamless connections for millions of clients without the need for coding, integration pipelines, or extra storage requirements. It establishes a bidirectional interface that bridges Kafka with MQTT clients, eliminating the hassles of overseeing external MQTT clusters and reducing data redundancy. With Waterstream, scalability is straightforward, as its nodes operate independently for most tasks, allowing you to easily add more instances to accommodate a growing client base. The solution relies solely on Kafka, reaping the advantages of its built-in persistence features, which ensure high availability, impressive throughput, and minimal latency for optimal performance. Additionally, this means that you can focus on your applications while Waterstream efficiently manages the complexities of data streaming.
  • 26
    Macrometa Reviews
    We provide a globally distributed real-time database, along with stream processing and computing capabilities for event-driven applications, utilizing as many as 175 edge data centers around the world. Developers and API creators appreciate our platform because it addresses the complex challenges of managing shared mutable state across hundreds of locations with both strong consistency and minimal latency. Macrometa empowers you to seamlessly enhance your existing infrastructure, allowing you to reposition portions of your application or the entire setup closer to your end users. This strategic placement significantly boosts performance, enhances user experiences, and ensures adherence to international data governance regulations. Serving as a serverless, streaming NoSQL database, Macrometa encompasses integrated pub/sub features, stream data processing, and a compute engine. You can establish a stateful data infrastructure, create stateful functions and containers suitable for prolonged workloads, and handle data streams in real time. While you focus on coding, we manage all operational tasks and orchestration, freeing you to innovate without constraints. As a result, our platform not only simplifies development but also optimizes resource utilization across global networks.
  • 27
    Aiven for PostgreSQL Reviews
    Experience a fully managed and hosted PostgreSQL solution that delivers exceptional performance along with all the necessary extensions readily available. You can establish your fully managed PostgreSQL instance in under ten minutes, using our web console or through various programming methods such as API, CLI, Terraform provider, or Kubernetes operator. Our standby nodes automatically serve as read replicas, and you have the flexibility to generate additional read replicas across different public clouds and geographic regions, enabling the creation of multi-cloud architectures. With Point-In-Time Recovery, you can restore your data to any moment within your chosen retention timeframe. This fully managed SQL relational database is deployable in the cloud environment of your preference, offering a reputation for reliability, a comprehensive feature set, and outstanding performance. It is suitable for a wide range of applications, including location-based services, critical business solutions, or serving as a general transactional database to meet diverse needs. As a result, it serves as an excellent choice for organizations looking to enhance their data management capabilities effectively.
  • 28
    Google Cloud Dataflow Reviews
    Data processing that integrates both streaming and batch operations while being serverless, efficient, and budget-friendly. It offers a fully managed service for data processing, ensuring seamless automation in the provisioning and administration of resources. With horizontal autoscaling capabilities, worker resources can be adjusted dynamically to enhance overall resource efficiency. The innovation is driven by the open-source community, particularly through the Apache Beam SDK. This platform guarantees reliable and consistent processing with exactly-once semantics. Dataflow accelerates the development of streaming data pipelines, significantly reducing data latency in the process. By adopting a serverless model, teams can devote their efforts to programming rather than the complexities of managing server clusters, effectively eliminating the operational burdens typically associated with data engineering tasks. Additionally, Dataflow’s automated resource management not only minimizes latency but also optimizes utilization, ensuring that teams can operate with maximum efficiency. Furthermore, this approach promotes a collaborative environment where developers can focus on building robust applications without the distraction of underlying infrastructure concerns.
  • 29
    Lenses Reviews

    Lenses

    Lenses.io

    $49 per month
    Empower individuals to explore and analyze streaming data effectively. By sharing, documenting, and organizing your data, you can boost productivity by as much as 95%. Once you have your data, you can create applications tailored for real-world use cases. Implement a security model focused on data to address the vulnerabilities associated with open source technologies, ensuring data privacy is prioritized. Additionally, offer secure and low-code data pipeline functionalities that enhance usability. Illuminate all hidden aspects and provide unmatched visibility into data and applications. Integrate your data mesh and technological assets, ensuring you can confidently utilize open-source solutions in production environments. Lenses has been recognized as the premier product for real-time stream analytics, based on independent third-party evaluations. With insights gathered from our community and countless hours of engineering, we have developed features that allow you to concentrate on what generates value from your real-time data. Moreover, you can deploy and operate SQL-based real-time applications seamlessly over any Kafka Connect or Kubernetes infrastructure, including AWS EKS, making it easier than ever to harness the power of your data. By doing so, you will not only streamline operations but also unlock new opportunities for innovation.
  • 30
    Instaclustr Reviews

    Instaclustr

    Instaclustr

    $20 per node per month
    Instaclustr, the Open Source-as a Service company, delivers reliability at scale. We provide database, search, messaging, and analytics in an automated, trusted, and proven managed environment. We help companies focus their internal development and operational resources on creating cutting-edge customer-facing applications. Instaclustr is a cloud provider that works with AWS, Heroku Azure, IBM Cloud Platform, Azure, IBM Cloud and Google Cloud Platform. The company is certified by SOC 2 and offers 24/7 customer support.
  • 31
    Eclipse Streamsheets Reviews
    Create advanced applications that streamline workflows, provide ongoing operational monitoring, and manage processes in real-time. Your solutions are designed to operate continuously on cloud servers as well as edge devices. Utilizing a familiar spreadsheet interface, you don't need to be a programmer; instead, you can simply drag and drop data, enter formulas into cells, and create charts in an intuitive manner. All the essential protocols required for connecting to sensors and machinery, such as MQTT, REST, and OPC UA, are readily available. Streamsheets specializes in processing streaming data, including formats like MQTT and Kafka. You can select a topic stream, modify it as needed, and send it back into the vast world of streaming data. With REST, you gain access to a multitude of web services, while Streamsheets enables seamless connections both ways. Not only do Streamsheets operate in the cloud and on your servers, but they can also be deployed on edge devices, including Raspberry Pi, expanding their versatility to various environments. This flexibility allows businesses to adapt their systems according to their specific operational needs.
  • 32
    Airy Messenger Reviews
    Transform your customer service interactions and conversational AI applications by utilizing the open-source Airy platform. Airy Core stands out as a fully-featured conversational platform that is ready for production use. With Airy, you are equipped to handle conversational data sourced from multiple channels effortlessly. Powered by Apache Kafka, Airy's infrastructure allows for the simultaneous processing of numerous conversations and messages, efficiently streaming pertinent data wherever needed. You can easily integrate a variety of tools, from our complimentary open-source live chat plugin to popular messaging services like Facebook Messenger and Google’s Business Messages, all connected to your Airy Core. This seamless integration is made possible through an ingestion platform that leverages Apache Kafka to manage incoming webhook data from diverse sources. By effectively interpreting this data, we transform it into contacts, conversations, and messages that work independently of their origins, enhancing the versatility and capability of your conversational engagements. Ultimately, Airy empowers you to create a cohesive communication strategy across different platforms.
  • 33
    Samza Reviews

    Samza

    Apache Software Foundation

    Samza enables the development of stateful applications that can handle real-time data processing from various origins, such as Apache Kafka. Proven to perform effectively at scale, it offers versatile deployment choices, allowing execution on YARN or as an independent library. With the capability to deliver remarkably low latencies and high throughput, Samza provides instantaneous data analysis. It can manage multiple terabytes of state through features like incremental checkpoints and host-affinity, ensuring efficient data handling. Additionally, Samza's operational simplicity is enhanced by its deployment flexibility—whether on YARN, Kubernetes, or in standalone mode. Users can leverage the same codebase to seamlessly process both batch and streaming data, which streamlines development efforts. Furthermore, Samza integrates with a wide range of data sources, including Kafka, HDFS, AWS Kinesis, Azure Event Hubs, key-value stores, and ElasticSearch, making it a highly adaptable tool for modern data processing needs.
  • 34
    E-MapReduce Reviews
    EMR serves as a comprehensive enterprise-grade big data platform, offering cluster, job, and data management functionalities that leverage various open-source technologies, including Hadoop, Spark, Kafka, Flink, and Storm. Alibaba Cloud Elastic MapReduce (EMR) is specifically designed for big data processing within the Alibaba Cloud ecosystem. Built on Alibaba Cloud's ECS instances, EMR integrates the capabilities of open-source Apache Hadoop and Apache Spark. This platform enables users to utilize components from the Hadoop and Spark ecosystems, such as Apache Hive, Apache Kafka, Flink, Druid, and TensorFlow, for effective data analysis and processing. Users can seamlessly process data stored across multiple Alibaba Cloud storage solutions, including Object Storage Service (OSS), Log Service (SLS), and Relational Database Service (RDS). EMR also simplifies cluster creation, allowing users to establish clusters rapidly without the hassle of hardware and software configuration. Additionally, all maintenance tasks can be managed efficiently through its user-friendly web interface, making it accessible for various users regardless of their technical expertise.
  • 35
    Stackable Reviews
    The Stackable data platform was crafted with a focus on flexibility and openness. It offers a carefully selected range of top-notch open source data applications, including Apache Kafka, Apache Druid, Trino, and Apache Spark. Unlike many competitors that either promote their proprietary solutions or enhance vendor dependence, Stackable embraces a more innovative strategy. All data applications are designed to integrate effortlessly and can be added or removed with remarkable speed. Built on Kubernetes, it is capable of operating in any environment, whether on-premises or in the cloud. To initiate your first Stackable data platform, all you require is stackablectl along with a Kubernetes cluster. In just a few minutes, you will be poised to begin working with your data. You can set up your one-line startup command right here. Much like kubectl, stackablectl is tailored for seamless interaction with the Stackable Data Platform. Utilize this command line tool for deploying and managing stackable data applications on Kubernetes. With stackablectl, you have the ability to create, delete, and update components efficiently, ensuring a smooth operational experience for your data management needs. The versatility and ease of use make it an excellent choice for developers and data engineers alike.
  • 36
    Nussknacker Reviews
    Nussknacker allows domain experts to use a visual tool that is low-code to help them create and execute real-time decisioning algorithm instead of writing code. It is used to perform real-time actions on data: real-time marketing and fraud detection, Internet of Things customer 360, Machine Learning inferring, and Internet of Things customer 360. A visual design tool for decision algorithm is an essential part of Nussknacker. It allows non-technical users, such as analysts or business people, to define decision logic in a clear, concise, and easy-to-follow manner. With a click, scenarios can be deployed for execution once they have been created. They can be modified and redeployed whenever there is a need. Nussknacker supports streaming and request-response processing modes. It uses Kafka as its primary interface in streaming mode. It supports both stateful processing and stateless processing.
  • 37
    Altinity Reviews
    The engineering team at Altinity possesses extensive expertise, enabling them to implement a wide range of functionalities from essential ClickHouse features to the behavior of Kubernetes operators and enhancements for client libraries. They offer a versatile, docker-based GUI manager for ClickHouse that enables users to install clusters, manage nodes through addition, deletion, or replacement, monitor the status of clusters, and assist with troubleshooting and diagnostics. Additionally, they support various third-party tools and software integrations, including ingestion tools like Kafka and ClickTail, APIs for Python, Golang, ODBC, and Java, as well as compatibility with Kubernetes. UI tools such as Grafana, Superset, Tabix, and Graphite are also part of their ecosystem, along with database integrations for MySQL and PostgreSQL, and business intelligence tools like Tableau and many others. Altinity.Cloud draws upon its extensive experience gained from assisting numerous clients in managing ClickHouse-based analytics, ensuring it meets diverse needs. Built on a Kubernetes-based architecture, Altinity.Cloud offers both portability and flexibility regarding deployment options, allowing users to operate without fear of vendor lock-in. Recognizing that effective cost management is vital for SaaS companies, Altinity prioritizes this aspect in its offerings to support sustainable growth.
  • 38
    Baidu Messaging System Reviews
    The Baidu Messaging System (BMS) serves as a scalable and distributed message queue service renowned for its impressive throughput capabilities. It gathers extensive data from various sources such as websites, devices, and applications, allowing for immediate analysis of activities like user browsing behavior, clicks, and search queries. Built on the foundation of Apache Kafka, BMS leverages this robust, distributed, multi-partitioned, and multi-replica messaging platform. Producers and consumers communicate asynchronously through the message queue, enabling them to operate independently without waiting for one another. Unlike conventional messaging services, BMS simplifies the complexities of managing a Kafka cluster by offering it as a hosted solution. This means users can seamlessly integrate BMS with widely distributed applications without needing to manage cluster operations, paying only for what they use. Consequently, BMS provides an efficient and user-friendly approach to handling messaging needs in modern distributed systems.
  • 39
    Spark Streaming Reviews

    Spark Streaming

    Apache Software Foundation

    Spark Streaming extends the capabilities of Apache Spark by integrating its language-based API for stream processing, allowing you to create streaming applications in the same manner as batch applications. This powerful tool is compatible with Java, Scala, and Python. One of its key features is the automatic recovery of lost work and operator state, such as sliding windows, without requiring additional code from the user. By leveraging the Spark framework, Spark Streaming enables the reuse of the same code for batch processes, facilitates the joining of streams with historical data, and supports ad-hoc queries on the stream's state. This makes it possible to develop robust interactive applications rather than merely focusing on analytics. Spark Streaming is an integral component of Apache Spark, benefiting from regular testing and updates with each new release of Spark. Users can deploy Spark Streaming in various environments, including Spark's standalone cluster mode and other compatible cluster resource managers, and it even offers a local mode for development purposes. For production environments, Spark Streaming ensures high availability by utilizing ZooKeeper and HDFS, providing a reliable framework for real-time data processing. This combination of features makes Spark Streaming an essential tool for developers looking to harness the power of real-time analytics efficiently.
  • 40
    Equalum Reviews
    Equalum offers a unique continuous data integration and streaming platform that seamlessly accommodates real-time, batch, and ETL scenarios within a single, cohesive interface that requires no coding at all. Transition to real-time capabilities with an intuitive, fully orchestrated drag-and-drop user interface designed for ease of use. Enjoy the benefits of swift deployment, powerful data transformations, and scalable streaming data pipelines, all achievable in just minutes. With a multi-modal and robust change data capture (CDC) system, it enables efficient real-time streaming and data replication across various sources. Its design is optimized for exceptional performance regardless of the data origin, providing the advantages of open-source big data frameworks without the usual complexities. By leveraging the scalability inherent in open-source data technologies like Apache Spark and Kafka, Equalum's platform engine significantly enhances the efficiency of both streaming and batch data operations. This cutting-edge infrastructure empowers organizations to handle larger data volumes while enhancing performance and reducing the impact on their systems, ultimately facilitating better decision-making and quicker insights. Embrace the future of data integration with a solution that not only meets current demands but also adapts to evolving data challenges.
  • 41
    HStreamDB Reviews
    A streaming database is specifically designed to efficiently ingest, store, process, and analyze large volumes of data streams. This advanced data infrastructure integrates messaging, stream processing, and storage to enable real-time value extraction from your data. It continuously handles vast amounts of data generated by diverse sources, including sensors from IoT devices. Data streams are securely stored in a dedicated distributed streaming data storage cluster that can manage millions of streams. By subscribing to topics in HStreamDB, users can access and consume data streams in real-time at speeds comparable to Kafka. The system also allows for permanent storage of data streams, enabling users to replay and analyze them whenever needed. With a familiar SQL syntax, you can process these data streams based on event-time, similar to querying data in a traditional relational database. This functionality enables users to filter, transform, aggregate, and even join multiple streams seamlessly, enhancing the overall data analysis experience. Ultimately, the integration of these features ensures that organizations can leverage their data effectively and make timely decisions.
  • 42
    Keen Reviews

    Keen

    Keen.io

    $149 per month
    Keen is a fully managed event streaming platform. Our real-time data pipeline, built on Apache Kafka, makes it easy to collect large amounts of event data. Keen's powerful REST APIs and SDKs allow you to collect event data from any device connected to the internet. Our platform makes it possible to securely store your data, reducing operational and delivery risks with Keen. Apache Cassandra's storage infrastructure ensures data is completely secure by transferring it via HTTPS and TLS. The data is then stored with multilayer AES encryption. Access Keys allow you to present data in an arbitrary way without having to re-architect or re-architect the data model. Role-based Access Control allows for completely customizable permission levels, down to specific queries or data points.
  • 43
    Spring Cloud Data Flow Reviews
    Microservices architecture enables efficient streaming and batch data processing specifically designed for platforms like Cloud Foundry and Kubernetes. By utilizing Spring Cloud Data Flow, users can effectively design intricate topologies for their data pipelines, which feature Spring Boot applications developed with the Spring Cloud Stream or Spring Cloud Task frameworks. This powerful tool caters to a variety of data processing needs, encompassing areas such as ETL, data import/export, event streaming, and predictive analytics. The Spring Cloud Data Flow server leverages Spring Cloud Deployer to facilitate the deployment of these data pipelines, which consist of Spring Cloud Stream or Spring Cloud Task applications, onto contemporary infrastructures like Cloud Foundry and Kubernetes. Additionally, a curated selection of pre-built starter applications for streaming and batch tasks supports diverse data integration and processing scenarios, aiding users in their learning and experimentation endeavors. Furthermore, developers have the flexibility to create custom stream and task applications tailored to specific middleware or data services, all while adhering to the user-friendly Spring Boot programming model. This adaptability makes Spring Cloud Data Flow a valuable asset for organizations looking to optimize their data workflows.
  • 44
    TIBCO Platform Reviews
    TIBCO provides robust solutions designed to fulfill your requirements for performance, throughput, reliability, and scalability, while also offering diverse technology and deployment alternatives to ensure real-time data accessibility in critical areas. The TIBCO Platform integrates a continuously developing array of your TIBCO solutions, regardless of their hosting environment—be it cloud-based, on-premises, or at the edge—into a cohesive, single experience that simplifies management and monitoring. By doing so, TIBCO supports the creation of solutions vital for the success of major enterprises around the globe, enabling them to thrive in a competitive landscape. This commitment to innovation positions TIBCO as a key player in the digital transformation journey of businesses.
  • 45
    Arroyo Reviews
    Scale from zero to millions of events per second effortlessly. Arroyo is delivered as a single, compact binary, allowing for local development on MacOS or Linux, and seamless deployment to production environments using Docker or Kubernetes. As a pioneering stream processing engine, Arroyo has been specifically designed to simplify real-time processing, making it more accessible than traditional batch processing. Its architecture empowers anyone with SQL knowledge to create dependable, efficient, and accurate streaming pipelines. Data scientists and engineers can independently develop comprehensive real-time applications, models, and dashboards without needing a specialized team of streaming professionals. By employing SQL, users can transform, filter, aggregate, and join data streams, all while achieving sub-second response times. Your streaming pipelines should remain stable and not trigger alerts simply because Kubernetes has chosen to reschedule your pods. Built for modern, elastic cloud infrastructures, Arroyo supports everything from straightforward container runtimes like Fargate to complex, distributed setups on Kubernetes, ensuring versatility and robust performance across various environments. This innovative approach to stream processing significantly enhances the ability to manage data flows in real-time applications.