Atera
The all-in-one IT management platform, powered by Action AI™
Atera is the all-in-one IT management platform that combines RMM, Helpdesk, and ticketing with AI to boost organizational efficiency at scale.
Try Atera Free Now!
Learn more
Vertex AI
Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case.
Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
Learn more
GLM-4.6
GLM-4.6 builds upon the foundations laid by its predecessor, showcasing enhanced reasoning, coding, and agent capabilities, resulting in notable advancements in inferential accuracy, improved tool usage during reasoning tasks, and a more seamless integration within agent frameworks. In comprehensive benchmark evaluations that assess reasoning, coding, and agent performance, GLM-4.6 surpasses GLM-4.5 and competes robustly against other models like DeepSeek-V3.2-Exp and Claude Sonnet 4, although it still lags behind Claude Sonnet 4.5 in terms of coding capabilities. Furthermore, when subjected to practical tests utilizing an extensive “CC-Bench” suite that includes tasks in front-end development, tool creation, data analysis, and algorithmic challenges, GLM-4.6 outperforms GLM-4.5 while nearing parity with Claude Sonnet 4, achieving victory in approximately 48.6% of direct comparisons and demonstrating around 15% improved token efficiency. This latest model is accessible through the Z.ai API, providing developers the flexibility to implement it as either an LLM backend or as the core of an agent within the platform's API ecosystem. In addition, its advancements could significantly enhance productivity in various application domains, making it an attractive option for developers looking to leverage cutting-edge AI technology.
Learn more
FutureHouse
FutureHouse is a nonprofit research organization dedicated to harnessing AI for the advancement of scientific discovery in biology and other intricate disciplines. This innovative lab boasts advanced AI agents that support researchers by speeding up various phases of the research process. Specifically, FutureHouse excels in extracting and summarizing data from scientific publications, demonstrating top-tier performance on assessments like the RAG-QA Arena's science benchmark. By utilizing an agentic methodology, it facilitates ongoing query refinement, re-ranking of language models, contextual summarization, and exploration of document citations to improve retrieval precision. In addition, FutureHouse provides a robust framework for training language agents on demanding scientific challenges, which empowers these agents to undertake tasks such as protein engineering, summarizing literature, and executing molecular cloning. To further validate its efficacy, the organization has developed the LAB-Bench benchmark, which measures language models against various biology research assignments, including information extraction and database retrieval, thus contributing to the broader scientific community. FutureHouse not only enhances research capabilities but also fosters collaboration among scientists and AI specialists to push the boundaries of knowledge.
Learn more