ZeroPath
ZeroPath (YC S24) is an AI-native application security platform that delivers comprehensive code protection beyond traditional SAST. Founded by security engineers from Tesla and Google, ZeroPath combines large language models with deep program analysis to deliver intelligent security testing that finds real vulnerabilities while dramatically reducing false positives.
Unlike traditional SAST tools that rely on pattern matching, ZeroPath understands code context, business logic, and developer intent. This enables identification of sophisticated security issues including business logic flaws, broken authentication, authorization bypasses, and complex dependency vulnerabilities.
Our comprehensive security suite covers the application security lifecycle:
1. AI-powered SAST
2. Software Composition Analysis with reachability analysis
3. Secrets detection and validation
4. Infrastructure as Code scanning
5. Automated PR reviews
6. Automated patch generation
and more...
ZeroPath integrates seamlessly with GitHub, GitLab, Bitbucket, Azure DevOps and many more. The platform handles codebases with millions of lines across Python, JavaScript, TypeScript, Java, Go, Ruby, Rust, PHP, Kotlin and more.
Our research team has been successful in finding vulnerabilities like critical account takeover in better-auth (CVE-2025-61928, 300k+ weekly downloads), identifying 170+ verified bugs in curl, and discovering 0-days in production systems at Netflix, Hulu, and Salesforce.
Trusted by 750+ companies and performing 200k+ code scans monthly.
Learn more
Astra Pentest
Astra's Pentest is a comprehensive solution for penetration testing. It includes an intelligent vulnerability scanner and in-depth manual pentesting.
The automated scanner performs 10000+ security checks, including security checks for all CVEs listed in the OWASP top 10 and SANS 25. It also conducts all required tests to comply with ISO 27001 and HIPAA.
Astra provides an interactive pentest dashboard which allows users to visualize vulnerability analysis, assign vulnerabilities to team members, collaborate with security experts, and to collaborate with security experts. The integrations with CI/CD platforms and Jira are also available if users don't wish to return to the dashboard each time they want to use it or assign a vulnerability for a team member.
Learn more
OWASP WSFuzzer
Fuzz testing, commonly referred to as fuzzing, is a technique used in software testing that aims to discover implementation errors by injecting malformed or semi-malformed data in an automated way. For example, consider a scenario involving an integer variable within a program that captures a user's selection among three questions; the user's choice can be represented by the integers 0, 1, or 2, resulting in three distinct cases. Since integers are typically stored as fixed-size variables, a failure to implement the default switch case securely could lead to program crashes and various traditional security vulnerabilities. Fuzzing serves as an automated method for uncovering software implementation issues, enabling the identification of bugs when they occur. A fuzzer is a specialized tool designed to automatically inject semi-random data into the program stack, aiding in the detection of anomalies. The process of generating this data involves the use of generators, while the identification of vulnerabilities often depends on debugging tools that can analyze the program's behavior under the influence of the injected data. These generators typically utilize a mixture of established static fuzzing vectors to enhance the testing process, ultimately contributing to more robust software development practices.
Learn more
Honggfuzz
Honggfuzz is a software fuzzer focused on enhancing security through its advanced fuzzing techniques. It employs evolutionary and feedback-driven methods that rely on both software and hardware-based code coverage. This tool is designed to operate in a multi-process and multi-threaded environment, allowing users to maximize their CPU's potential without needing to launch multiple fuzzer instances. The file corpus is seamlessly shared and refined across all processes undergoing fuzzing, which greatly enhances efficiency. When persistent fuzzing mode is activated, Honggfuzz exhibits remarkable speed, capable of executing a simple or empty LLVMFuzzerTestOneInput function at an impressive rate of up to one million iterations per second on modern CPUs. It has a proven history of identifying security vulnerabilities, including the notable discovery of the only critical vulnerability in OpenSSL to date. Unlike other fuzzing tools, Honggfuzz can detect and report on hijacked or ignored signals that result from crashes, making it a valuable asset for identifying hidden issues within fuzzed programs. Its robust features make it an essential tool for security researchers aiming to uncover hidden flaws in software systems.
Learn more