Best Observability Tools for OpenAI

Find and compare the best Observability tools for OpenAI in 2025

Use the comparison tool below to compare the top Observability tools for OpenAI on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Langfuse Reviews

    Langfuse

    Langfuse

    $29/month
    1 Rating
    Langfuse is a free and open-source LLM engineering platform that helps teams to debug, analyze, and iterate their LLM Applications. Observability: Incorporate Langfuse into your app to start ingesting traces. Langfuse UI : inspect and debug complex logs, user sessions and user sessions Langfuse Prompts: Manage versions, deploy prompts and manage prompts within Langfuse Analytics: Track metrics such as cost, latency and quality (LLM) to gain insights through dashboards & data exports Evals: Calculate and collect scores for your LLM completions Experiments: Track app behavior and test it before deploying new versions Why Langfuse? - Open source - Models and frameworks are agnostic - Built for production - Incrementally adaptable - Start with a single LLM or integration call, then expand to the full tracing for complex chains/agents - Use GET to create downstream use cases and export the data
  • 2
    Observe Reviews

    Observe

    Observe

    $0.35 Per GiB
    Application Performance Management Get complete visibility into the health and performance of applications. Detect and resolve performance issues no matter where they occur in the entire stack. No sampling. No blindspots. Log Analytics Search and analyze event data across your applications, infrastructure, security, or business without worrying about indexing, data tiers, retention policies, or cost. Keep all log data always hot. Infrastructure Monitoring Capture metrics across your infrastructure – cloud, Kubernetes, serverless, applications or from over 400 pre-built integrations. Visualize the entire stack and troubleshoot performance issues in real-time. O11y AI Investigate and resolve incidents faster with O11y Investigator. Use natural language to explore observability data with O11y Copilot, generate Regular Expressions effortlessly with O11y Regex, and obtain precise answers with O11y GPT. Observe for Snowflake Comprehensive observability into Snowflake workloads. Optimize performance and resource utilization. Deliver secure and compliant operations.
  • 3
    Arize AI Reviews

    Arize AI

    Arize AI

    $50/month
    Arize's machine-learning observability platform automatically detects and diagnoses problems and improves models. Machine learning systems are essential for businesses and customers, but often fail to perform in real life. Arize is an end to-end platform for observing and solving issues in your AI models. Seamlessly enable observation for any model, on any platform, in any environment. SDKs that are lightweight for sending production, validation, or training data. You can link real-time ground truth with predictions, or delay. You can gain confidence in your models' performance once they are deployed. Identify and prevent any performance or prediction drift issues, as well as quality issues, before they become serious. Even the most complex models can be reduced in time to resolution (MTTR). Flexible, easy-to use tools for root cause analysis are available.
  • 4
    Helicone Reviews

    Helicone

    Helicone

    $1 per 10,000 requests
    Monitor expenses, usage, and latency for GPT applications seamlessly with just one line of code. Renowned organizations that leverage OpenAI trust our service. We are expanding our support to include Anthropic, Cohere, Google AI, and additional platforms in the near future. Stay informed about your expenses, usage patterns, and latency metrics. With Helicone, you can easily integrate models like GPT-4 to oversee API requests and visualize outcomes effectively. Gain a comprehensive view of your application through a custom-built dashboard specifically designed for generative AI applications. All your requests can be viewed in a single location, where you can filter them by time, users, and specific attributes. Keep an eye on expenditures associated with each model, user, or conversation to make informed decisions. Leverage this information to enhance your API usage and minimize costs. Additionally, cache requests to decrease latency and expenses, while actively monitoring errors in your application and addressing rate limits and reliability issues using Helicone’s robust features. This way, you can optimize performance and ensure that your applications run smoothly.
  • 5
    OpenLIT Reviews

    OpenLIT

    OpenLIT

    Free
    OpenLIT serves as an observability tool that is fully integrated with OpenTelemetry, specifically tailored for application monitoring. It simplifies the integration of observability into AI projects, requiring only a single line of code for setup. This tool is compatible with leading LLM libraries, such as those from OpenAI and HuggingFace, making its implementation feel both easy and intuitive. Users can monitor LLM and GPU performance, along with associated costs, to optimize efficiency and scalability effectively. The platform streams data for visualization, enabling rapid decision-making and adjustments without compromising application performance. OpenLIT's user interface is designed to provide a clear view of LLM expenses, token usage, performance metrics, and user interactions. Additionally, it facilitates seamless connections to widely-used observability platforms like Datadog and Grafana Cloud for automatic data export. This comprehensive approach ensures that your applications are consistently monitored, allowing for proactive management of resources and performance. With OpenLIT, developers can focus on enhancing their AI models while the tool manages observability seamlessly.
  • 6
    Langtrace Reviews

    Langtrace

    Langtrace

    Free
    Langtrace is an open-source observability solution designed to gather and evaluate traces and metrics, aiming to enhance your LLM applications. It prioritizes security with its cloud platform being SOC 2 Type II certified, ensuring your data remains highly protected. The tool is compatible with a variety of popular LLMs, frameworks, and vector databases. Additionally, Langtrace offers the option for self-hosting and adheres to the OpenTelemetry standard, allowing traces to be utilized by any observability tool of your preference and thus avoiding vendor lock-in. Gain comprehensive visibility and insights into your complete ML pipeline, whether working with a RAG or a fine-tuned model, as it effectively captures traces and logs across frameworks, vector databases, and LLM requests. Create annotated golden datasets through traced LLM interactions, which can then be leveraged for ongoing testing and improvement of your AI applications. Langtrace comes equipped with heuristic, statistical, and model-based evaluations to facilitate this enhancement process, thereby ensuring that your systems evolve alongside the latest advancements in technology. With its robust features, Langtrace empowers developers to maintain high performance and reliability in their machine learning projects.
  • 7
    Logfire Reviews

    Logfire

    Pydantic

    $2 per month
    Pydantic Logfire serves as an observability solution aimed at enhancing the monitoring of Python applications by converting logs into practical insights. It offers valuable performance metrics, tracing capabilities, and a comprehensive view of application dynamics, which encompasses request headers, bodies, and detailed execution traces. Built upon OpenTelemetry, Pydantic Logfire seamlessly integrates with widely-used libraries, ensuring user-friendliness while maintaining the adaptability of OpenTelemetry’s functionalities. Developers can enrich their applications with structured data and easily queryable Python objects, allowing them to obtain real-time insights through a variety of visualizations, dashboards, and alert systems. In addition, Logfire facilitates manual tracing, context logging, and exception handling, presenting a contemporary logging framework. This tool is specifically designed for developers in search of a streamlined and efficient observability solution, boasting ready-to-use integrations and user-centric features. Its flexibility and comprehensive capabilities make it a valuable asset for anyone looking to improve their application's monitoring strategy.
  • 8
    Usage Panda Reviews
    Enhance the security of your OpenAI interactions by implementing enterprise-grade features tailored for robust oversight. While OpenAI's LLM APIs offer remarkable capabilities, they often fall short in providing the detailed control and transparency that larger organizations require. Usage Panda addresses these shortcomings effectively. It scrutinizes security protocols for each request prior to submission to OpenAI, ensuring compliance. Prevent unexpected charges by restricting requests to those that stay within predetermined cost limits. Additionally, you can choose to log every request, along with its parameters and responses, for thorough tracking. The platform allows for the creation of an unlimited number of connections, each tailored with specific policies and restrictions. It also empowers you to monitor, censor, and block any malicious activities that seek to manipulate or expose system prompts. With Usage Panda's advanced visualization tools and customizable charts, you can analyze usage metrics in fine detail. Furthermore, notifications can be sent to your email or Slack when approaching usage caps or billing thresholds, ensuring you remain informed. You can trace costs and policy breaches back to individual application users, enabling the establishment of user-specific rate limits to manage resource allocation effectively. This comprehensive approach not only secures your operations but also enhances your overall management of OpenAI API usage.
  • 9
    Portkey Reviews

    Portkey

    Portkey.ai

    $49 per month
    LMOps is a stack that allows you to launch production-ready applications for monitoring, model management and more. Portkey is a replacement for OpenAI or any other provider APIs. Portkey allows you to manage engines, parameters and versions. Switch, upgrade, and test models with confidence. View aggregate metrics for your app and users to optimize usage and API costs Protect your user data from malicious attacks and accidental exposure. Receive proactive alerts if things go wrong. Test your models in real-world conditions and deploy the best performers. We have been building apps on top of LLM's APIs for over 2 1/2 years. While building a PoC only took a weekend, bringing it to production and managing it was a hassle! We built Portkey to help you successfully deploy large language models APIs into your applications. We're happy to help you, regardless of whether or not you try Portkey!
  • 10
    Aviz Networks Reviews
    Aviz delivers a versatile data-focused framework that remains independent of vendors and accommodates various ASICs, switches, network operating systems, cloud environments, and large language models, while also integrating effectively with AI and security tools. Tailored for the open-source networking paradigm, it functions smoothly with current network setups, facilitating an effortless transition. By allowing clients the freedom to select their solutions without being tied to a specific vendor, Aviz ensures an enterprise-quality experience in a diverse multi-vendor landscape. Moreover, our conversational tool unlocks valuable insights and empowers generative AI capabilities throughout your network, providing immediate answers to inquiries ranging from compliance to capacity planning. Users can enjoy seamless integration alongside a guaranteed 40% return on investment through non-intrusive, predefined AI applications customized for their unique needs. Additionally, substantial cost savings can be realized with our software-defined packet broker compatible with users' preferred switches, all while harnessing the benefits of open-source technology. This comprehensive approach not only enhances operational efficiency but also positions organizations to thrive in an increasingly complex digital environment.
  • Previous
  • You're on page 1
  • Next