Apache Mahout is an incredibly powerful, scalable and versatile machine-learning library that was designed for distributed data processing. It provides a set of algorithms that can be used for a variety of tasks, such as classification, clustering and recommendation. Mahout is built on top of Apache Hadoop and uses MapReduce and Spark for data processing. Apache Mahout(TM), a distributed linear-algebra framework, is a mathematically expressive Scala DSL that allows mathematicians to quickly implement their algorithms. Apache Spark is recommended as the default distributed back-end, but can be extended to work with other distributed backends. Matrix computations play a key role in many scientific and engineering applications such as machine learning, data analysis, and computer vision. Apache Mahout is designed for large-scale data processing, leveraging Hadoop and Spark.