Best Machine Learning Software for Hadoop

Find and compare the best Machine Learning software for Hadoop in 2025

Use the comparison tool below to compare the top Machine Learning software for Hadoop on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Composable DataOps Platform Reviews

    Composable DataOps Platform

    Composable Analytics

    $8/hr - pay-as-you-go
    4 Ratings
    Composable is an enterprise-grade DataOps platform designed for business users who want to build data-driven products and create data intelligence solutions. It can be used to design data-driven products that leverage disparate data sources, live streams, and event data, regardless of their format or structure. Composable offers a user-friendly, intuitive dataflow visual editor, built-in services that facilitate data engineering, as well as a composable architecture which allows abstraction and integration of any analytical or software approach. It is the best integrated development environment for discovering, managing, transforming, and analysing enterprise data.
  • 2
    Indexima Data Hub Reviews

    Indexima Data Hub

    Indexima

    $3,290 per month
    Transform the way you view time in data analytics. With the ability to access your business data almost instantly, you can operate directly from your dashboard without the need to consult the IT team repeatedly. Introducing Indexima DataHub, a revolutionary environment that empowers both operational and functional users to obtain immediate access to their data. Through an innovative fusion of a specialized indexing engine and machine learning capabilities, Indexima enables organizations to streamline and accelerate their analytics processes. Designed for robustness and scalability, this solution allows companies to execute queries on vast amounts of data—potentially up to tens of billions of rows—in mere milliseconds. The Indexima platform facilitates instant analytics on all your data with just a single click. Additionally, thanks to Indexima's new ROI and TCO calculator, you can discover the return on investment for your data platform in just 30 seconds, taking into account infrastructure costs, project deployment duration, and data engineering expenses while enhancing your analytical capabilities. Experience the future of data analytics and unlock unprecedented efficiency in your operations.
  • 3
    Inferyx Reviews
    Break free from the limitations of application silos, budget overruns, and outdated skills by leveraging our advanced data and analytics platform to accelerate growth. This sophisticated platform is tailored for effective data management and in-depth analytics, facilitating seamless scaling across various technological environments. Our innovative architecture is designed to comprehend the flow and transformation of data throughout its entire lifecycle. This capability supports the creation of resilient enterprise AI applications that can withstand future challenges. With a highly modular and flexible design, our platform accommodates a diverse range of components, allowing for effortless integration. Its multi-tenant architecture is specifically crafted to promote scalability. Additionally, advanced data visualization tools simplify the analysis of intricate data structures, leading to improved enterprise AI application development within an intuitive, low-code predictive environment. Built on a unique hybrid multi-cloud framework utilizing open-source community software, our platform is highly adaptable, secure, and cost-effective, making it an ideal choice for organizations seeking efficiency and innovation. Furthermore, this platform not only empowers businesses to harness their data effectively but also enhances collaboration across teams, fostering a culture of data-driven decision-making.
  • 4
    Alteryx Reviews
    Embrace a groundbreaking age of analytics through the Alteryx AI Platform. Equip your organization with streamlined data preparation, analytics powered by artificial intelligence, and accessible machine learning, all while ensuring governance and security are built in. This marks the dawn of a new era for data-driven decision-making accessible to every user and team at all levels. Enhance your teams' capabilities with a straightforward, user-friendly interface that enables everyone to develop analytical solutions that boost productivity, efficiency, and profitability. Foster a robust analytics culture by utilizing a comprehensive cloud analytics platform that allows you to convert data into meaningful insights via self-service data preparation, machine learning, and AI-generated findings. Minimize risks and safeguard your data with cutting-edge security protocols and certifications. Additionally, seamlessly connect to your data and applications through open API standards, facilitating a more integrated and efficient analytical environment. By adopting these innovations, your organization can thrive in an increasingly data-centric world.
  • 5
    Datatron Reviews
    Datatron provides tools and features that are built from scratch to help you make machine learning in production a reality. Many teams realize that there is more to deploying models than just the manual task. Datatron provides a single platform that manages all your ML, AI and Data Science models in production. We can help you automate, optimize and accelerate your ML model production to ensure they run smoothly and efficiently. Data Scientists can use a variety frameworks to create the best models. We support any framework you use to build a model (e.g. TensorFlow and H2O, Scikit-Learn and SAS are supported. Explore models that were created and uploaded by your data scientists, all from one central repository. In just a few clicks, you can create scalable model deployments. You can deploy models using any language or framework. Your model performance will help you make better decisions.
  • 6
    Yottamine Reviews
    Our cutting-edge machine learning technology is tailored to effectively forecast financial time series, even when only a limited number of training data points are accessible. While advanced AI can be resource-intensive, YottamineAI harnesses the power of the cloud, negating the need for significant investments in hardware management, which considerably accelerates the realization of higher ROI. We prioritize the security of your trade secrets through robust encryption and key protection measures. Adhering to AWS's best practices, we implement strong encryption protocols to safeguard your data. Additionally, we assess your current or prospective data to facilitate predictive analytics that empower you to make informed, data-driven decisions. For those requiring project-specific predictive analytics, Yottamine Consulting Services offers tailored consulting solutions to meet your data-mining requirements effectively. We are committed to delivering not only innovative technology but also exceptional customer support throughout your journey.
  • 7
    Apache Mahout Reviews

    Apache Mahout

    Apache Software Foundation

    Apache Mahout is an advanced and adaptable machine learning library that excels in processing distributed datasets efficiently. It encompasses a wide array of algorithms suitable for tasks such as classification, clustering, recommendation, and pattern mining. By integrating seamlessly with the Apache Hadoop ecosystem, Mahout utilizes MapReduce and Spark to facilitate the handling of extensive datasets. This library functions as a distributed linear algebra framework, along with a mathematically expressive Scala domain-specific language, which empowers mathematicians, statisticians, and data scientists to swiftly develop their own algorithms. While Apache Spark is the preferred built-in distributed backend, Mahout also allows for integration with other distributed systems. Matrix computations play a crucial role across numerous scientific and engineering disciplines, especially in machine learning, computer vision, and data analysis. Thus, Apache Mahout is specifically engineered to support large-scale data processing by harnessing the capabilities of both Hadoop and Spark, making it an essential tool for modern data-driven applications.
  • 8
    MLlib Reviews

    MLlib

    Apache Software Foundation

    MLlib, the machine learning library of Apache Spark, is designed to be highly scalable and integrates effortlessly with Spark's various APIs, accommodating programming languages such as Java, Scala, Python, and R. It provides an extensive range of algorithms and utilities, which encompass classification, regression, clustering, collaborative filtering, and the capabilities to build machine learning pipelines. By harnessing Spark's iterative computation features, MLlib achieves performance improvements that can be as much as 100 times faster than conventional MapReduce methods. Furthermore, it is built to function in a variety of environments, whether on Hadoop, Apache Mesos, Kubernetes, standalone clusters, or within cloud infrastructures, while also being able to access multiple data sources, including HDFS, HBase, and local files. This versatility not only enhances its usability but also establishes MLlib as a powerful tool for executing scalable and efficient machine learning operations in the Apache Spark framework. The combination of speed, flexibility, and a rich set of features renders MLlib an essential resource for data scientists and engineers alike.
  • Previous
  • You're on page 1
  • Next