Best LLM Evaluation Tools for Amazon SageMaker

Find and compare the best LLM Evaluation tools for Amazon SageMaker in 2025

Use the comparison tool below to compare the top LLM Evaluation tools for Amazon SageMaker on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Comet Reviews

    Comet

    Comet

    $179 per user per month
    Manage and optimize models throughout the entire ML lifecycle. This includes experiment tracking, monitoring production models, and more. The platform was designed to meet the demands of large enterprise teams that deploy ML at scale. It supports any deployment strategy, whether it is private cloud, hybrid, or on-premise servers. Add two lines of code into your notebook or script to start tracking your experiments. It works with any machine-learning library and for any task. To understand differences in model performance, you can easily compare code, hyperparameters and metrics. Monitor your models from training to production. You can get alerts when something is wrong and debug your model to fix it. You can increase productivity, collaboration, visibility, and visibility among data scientists, data science groups, and even business stakeholders.
  • 2
    Deepchecks Reviews

    Deepchecks

    Deepchecks

    $1,000 per month
    Launch top-notch LLM applications swiftly while maintaining rigorous testing standards. You should never feel constrained by the intricate and often subjective aspects of LLM interactions. Generative AI often yields subjective outcomes, and determining the quality of generated content frequently necessitates the expertise of a subject matter professional. If you're developing an LLM application, you're likely aware of the myriad constraints and edge cases that must be managed before a successful release. Issues such as hallucinations, inaccurate responses, biases, policy deviations, and potentially harmful content must all be identified, investigated, and addressed both prior to and following the launch of your application. Deepchecks offers a solution that automates the assessment process, allowing you to obtain "estimated annotations" that only require your intervention when absolutely necessary. With over 1000 companies utilizing our platform and integration into more than 300 open-source projects, our core LLM product is both extensively validated and reliable. You can efficiently validate machine learning models and datasets with minimal effort during both research and production stages, streamlining your workflow and improving overall efficiency. This ensures that you can focus on innovation without sacrificing quality or safety.
  • 3
    Label Studio Reviews
    Introducing the ultimate data annotation tool that offers unparalleled flexibility and ease of installation. Users can create customized user interfaces or opt for ready-made labeling templates tailored to their specific needs. The adaptable layouts and templates seamlessly integrate with your dataset and workflow requirements. It supports various object detection methods in images, including boxes, polygons, circles, and key points, and allows for the segmentation of images into numerous parts. Additionally, machine learning models can be utilized to pre-label data and enhance efficiency throughout the annotation process. Features such as webhooks, a Python SDK, and an API enable users to authenticate, initiate projects, import tasks, and manage model predictions effortlessly. Save valuable time by leveraging predictions to streamline your labeling tasks, thanks to the integration with ML backends. Furthermore, users can connect to cloud object storage solutions like S3 and GCP to label data directly in the cloud. The Data Manager equips you with advanced filtering options to effectively prepare and oversee your dataset. This platform accommodates multiple projects, diverse use cases, and various data types, all in one convenient space. By simply typing in the configuration, you can instantly preview the labeling interface. Live serialization updates at the bottom of the page provide a real-time view of what Label Studio anticipates as input, ensuring a smooth user experience. This tool not only improves annotation accuracy but also fosters collaboration among teams working on similar projects.
  • 4
    MLflow Reviews
    MLflow is an open-source suite designed to oversee the machine learning lifecycle, encompassing aspects such as experimentation, reproducibility, deployment, and a centralized model registry. The platform features four main components that facilitate various tasks: tracking and querying experiments encompassing code, data, configurations, and outcomes; packaging data science code to ensure reproducibility across multiple platforms; deploying machine learning models across various serving environments; and storing, annotating, discovering, and managing models in a unified repository. Among these, the MLflow Tracking component provides both an API and a user interface for logging essential aspects like parameters, code versions, metrics, and output files generated during the execution of machine learning tasks, enabling later visualization of results. It allows for logging and querying experiments through several interfaces, including Python, REST, R API, and Java API. Furthermore, an MLflow Project is a structured format for organizing data science code, ensuring it can be reused and reproduced easily, with a focus on established conventions. Additionally, the Projects component comes equipped with an API and command-line tools specifically designed for executing these projects effectively. Overall, MLflow streamlines the management of machine learning workflows, making it easier for teams to collaborate and iterate on their models.
  • 5
    Galileo Reviews
    Understanding the shortcomings of models can be challenging, particularly in identifying which data caused poor performance and the reasons behind it. Galileo offers a comprehensive suite of tools that allows machine learning teams to detect and rectify data errors up to ten times quicker. By analyzing your unlabeled data, Galileo can automatically pinpoint patterns of errors and gaps in the dataset utilized by your model. We recognize that the process of ML experimentation can be chaotic, requiring substantial data and numerous model adjustments over multiple iterations. With Galileo, you can manage and compare your experiment runs in a centralized location and swiftly distribute reports to your team. Designed to seamlessly fit into your existing ML infrastructure, Galileo enables you to send a curated dataset to your data repository for retraining, direct mislabeled data to your labeling team, and share collaborative insights, among other functionalities. Ultimately, Galileo is specifically crafted for ML teams aiming to enhance the quality of their models more efficiently and effectively. This focus on collaboration and speed makes it an invaluable asset for teams striving to innovate in the machine learning landscape.
  • Previous
  • You're on page 1
  • Next