Best Web-Based Large Language Models of 2025

Find and compare the best Web-Based Large Language Models in 2025

Use the comparison tool below to compare the top Web-Based Large Language Models on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Phi-3 Reviews
    Small language models (SLMs), a powerful family of small language models, with low cost and low-latency performance. Maximize AI capabilities and lower resource usage, while ensuring cost-effective generative AI implementations across your applications. Accelerate response time in real-time interaction, autonomous systems, low latency apps, and other critical scenarios. Phi-3 can be run in the cloud, on the edge or on the device. This allows for greater flexibility in deployment and operation. Phi-3 models have been developed according to Microsoft AI principles, including accountability, transparency and fairness, reliability, safety and security, privacy, and inclusivity. Operate efficiently in offline environments, where data privacy or connectivity are limited. Expanded context window allows for more accurate, contextually relevant and coherent outputs. Deploy at edge to deliver faster response.
  • 2
    NVIDIA Nemotron Reviews
    NVIDIA Nemotron, a family open-source models created by NVIDIA is designed to generate synthetic language data for commercial applications. The Nemotron-4 model 340B is an important release by NVIDIA. It offers developers a powerful tool for generating high-quality data, and filtering it based upon various attributes, using a reward system.
  • 3
    Mathstral Reviews
    As a tribute for Archimedes' 2311th birthday, which we celebrate this year, we release our first Mathstral 7B model, designed specifically for math reasoning and scientific discoveries. The model comes with a 32k context-based window that is published under the Apache 2.0 License. Mathstral is a tool we're donating to the science community in order to help solve complex mathematical problems that require multi-step logical reasoning. The Mathstral release was part of a larger effort to support academic project, and it was produced as part of our collaboration with Project Numina. Mathstral, like Isaac Newton at his time, stands on Mistral 7B's shoulders and specializes in STEM. It has the highest level of reasoning in its size category, based on industry-standard benchmarks. It achieves 56.6% in MATH and 63.47% in MMLU. The following table shows the MMLU performance differences between Mathstral and Mistral 7B.
  • 4
    Grok-2 Reviews
    Grok-2 is the latest AI technology. It is a marvel in modern engineering that aims to push the limits of what artificial intelligence has the potential to achieve. Grok-2, the latest iteration of AI technology, is a marvel of modern engineering. It's designed to push the boundaries of what artificial intelligence can achieve. Grok-2, with its expanded knowledge base, which reaches back to the recent past and offers a unique perspective on humanity as well as humor, is a truly engaging AI. It can answer nearly any question in the most helpful way possible, and often provides solutions that are both innovative as well as outside of the box. Grok-2's design is based on truthfulness and avoids the pitfalls associated with woke culture. It strives to provide information and entertainment that are reliable in a complex world.
  • 5
    Jamba Reviews
    Jamba is a powerful and efficient long context model that is open to builders, but built for enterprises. Jamba's latency is superior to all other leading models of similar size. Jamba's 256k window is the longest available. Jamba's Mamba Transformer MoE Architecture is designed to increase efficiency and reduce costs. Jamba includes key features from OOTB, including function calls, JSON output, document objects and citation mode. Jamba 1.5 models deliver high performance throughout the entire context window. Jamba 1.5 models score highly in common quality benchmarks. Secure deployment tailored to your enterprise. Start using Jamba immediately on our production-grade SaaS Platform. Our strategic partners can deploy the Jamba model family. For enterprises who require custom solutions, we offer VPC and on-premise deployments. We offer hands-on management and continuous pre-training for enterprises with unique, bespoke needs.
  • 6
    OpenAI o1 Reviews
    OpenAI o1 is a new series AI models developed by OpenAI that focuses on enhanced reasoning abilities. These models, such as o1 preview and o1 mini, are trained with a novel reinforcement-learning approach that allows them to spend more time "thinking through" problems before presenting answers. This allows o1 excel in complex problem solving tasks in areas such as coding, mathematics, or science, outperforming other models like GPT-4o. The o1 series is designed to tackle problems that require deeper thinking processes. This marks a significant step in AI systems that can think more like humans.
  • 7
    OpenAI o1-mini Reviews
    OpenAI o1 mini is a new and cost-effective AI designed to enhance reasoning, especially in STEM fields such as mathematics and coding. It is part of the o1 Series, which focuses on solving problems by spending more "thinking" time through solutions. The o1 mini is 80% cheaper and smaller than its sibling. It performs well in coding and mathematical reasoning tasks.
  • 8
    DataGemma Reviews
    DataGemma is a pioneering project by Google that aims to improve the accuracy and reliability large language models (LLMs), when dealing with numerical and statistical data. DataGemma, launched as a collection of open models, leverages Google's Data Commons - a vast repository for public statistical data - to ground its responses in actual facts. This initiative uses two innovative approaches, Retrieval Interleaved Generation and Retrieval Augmented Generation. RIG integrates real-time checks of data during the generation process, ensuring factual accuracy. RAG retrieves pertinent information before generating answers, reducing the likelihood that AI hallucinations will occur. DataGemma's goal is to provide users with factual and trustworthy answers. This marks a significant step in reducing the amount of misinformation that AI-generated content contains.
  • 9
    LFM-40B Reviews
    LFM-40B provides a new balance in model size and output. It uses 12B parameters that are activated at the time of use. Its performance is comparable with models larger than it, and its MoE architecture allows for higher throughput on more cost-effective equipment.
  • 10
    LFM-3B Reviews
    LFM-3B offers incredible performance for its small size. It is ranked first among 3B parameter transforms, hybrids and RNN models. It also outperforms previous generations of 7B and13B models. It is also comparable to Phi-3.5 mini on multiple benchmarks while being 18.4% smaller. LFM-3B can be used for mobile applications and other text-based edge applications.
  • 11
    OpenScholar Reviews
    Ai2 OpenScholar, a collaboration between the University of Washington's Allen Institute for AI and the University of Washington, is designed to help scientists navigate and synthesize the vast expanse of the scientific literature. OpenScholar uses a retrieval-augmented model of language to answer user queries. It does this by identifying relevant papers and then generating answers based on those sources. This ensures that information is accurate and linked directly to existing research. OpenScholar-8B set new standards for factuality and accuracy of citations on the ScholarQABench benchmark. OpenScholar-8B, for example, maintains a solid grounding in real retrieved articles in the biomedical domain. This is in contrast to models like GPT-4 which tend to hallucinate references. Twenty scientists from computer science, biomedicine and physics evaluated OpenScholar's answers against expert-written responses to evaluate its real-world application.
  • 12
    OLMo 2 Reviews
    OLMo 2 is an open language model family developed by the Allen Institute for AI. It provides researchers and developers with open-source code and reproducible training recipes. These models can be trained with up to 5 trillion tokens, and they are competitive against other open-weight models such as Llama 3.0 on English academic benchmarks. OLMo 2 focuses on training stability by implementing techniques that prevent loss spikes in long training runs. It also uses staged training interventions to address capability deficits during late pretraining. The models incorporate the latest post-training methods from AI2's Tulu 3 resulting in OLMo 2-Instruct. The Open Language Modeling Evaluation System, or OLMES, was created to guide improvements throughout the development stages. It consists of 20 evaluation benchmarks assessing key capabilities.
  • 13
    Amazon Nova Reviews
    Amazon Nova is the new generation of foundation models (FMs), which are state-of-the art (SOTA), and offer industry-leading price-performance. They are available exclusively through Amazon Bedrock. Amazon Nova Micro and Amazon Nova Lite are understanding models which accept text, images, or videos as inputs and produce text output. They offer a wide range of capabilities, accuracy, speed and cost operation points. Amazon Nova Micro, a text-only model, delivers the lowest latency at a very low price. Amazon Nova Lite, a multimodal model with a low cost, is lightning-fast at processing text, image, and video inputs. Amazon Nova Pro is an extremely capable multimodal model that offers the best combination of accuracy and speed for a variety of tasks. Amazon Nova Pro is a powerful model that can handle almost any task. Its speed and cost efficiency are industry-leading.
  • 14
    Claude 3.5 Haiku Reviews
    Our fastest model, which delivers advanced coding, tool usage, and reasoning for an affordable price Claude 3.5 Haiku, our next-generation model, is our fastest. Claude 3.5 Haiku is faster than Claude 3 Haiku and has improved in every skill set. It also surpasses Claude 3 Opus on many intelligence benchmarks. Claude 3.5 Haiku can be accessed via our first-party APIs, Amazon Bedrock and Google Cloud Vertex AI. Initially, it is available as a text only model, with image input coming later.
  • 15
    OpenAI o1 Pro Reviews
    OpenAI o1 pro is an enhanced version of OpenAI’s o1 model. It was designed to handle more complex and demanding tasks, with greater reliability. It has significant performance improvements compared to its predecessor, the OpenAI o1 Preview, with a noticeable 34% reduction in errors and the ability think 50% faster. This model excels at math, physics and coding where it can provide accurate and detailed solutions. The o1 Pro mode is also capable of processing multimodal inputs including text and images. It is especially adept at reasoning tasks requiring deep thought and problem solving. ChatGPT Pro subscriptions offer unlimited usage as well as enhanced capabilities to users who need advanced AI assistance.
  • 16
    Phi-4 Reviews
    Phi-4 is the latest small language model (SLM), with 14B parameters. It excels in complex reasoning, including math, as well as conventional language processing. Phi-4, the latest member of the Phi family of SLMs, demonstrates what is possible as we continue exploring the boundaries of SLMs. Phi-4 will be available in Hugging Face and Azure AI Foundry, under a Microsoft Research License Agreement. Phi-4 is superior to comparable and larger models in math-related reasoning thanks to improvements throughout the process, including the use high-quality synthetic data, curation of organic data of high quality, and innovations post-training. Phi-4 continues pushing the boundaries of size vs. quality.
  • 17
    BLOOM Reviews
    BLOOM (autoregressive large language model) is trained to continue text using a prompt on large amounts of text data. It uses industrial-scale computational resources. It can produce coherent text in 46 languages and 13 programming language, which is almost impossible to distinguish from text written by humans. BLOOM can be trained to perform text tasks that it hasn’t been explicitly trained for by casting them as text generation jobs.
  • 18
    NVIDIA NeMo Megatron Reviews
    NVIDIA NeMo megatron is an end to-end framework that can be used to train and deploy LLMs with billions or trillions of parameters. NVIDIA NeMo Megatron is part of the NVIDIAAI platform and offers an efficient, cost-effective, and cost-effective containerized approach to building and deploying LLMs. It is designed for enterprise application development and builds upon the most advanced technologies of NVIDIA research. It provides an end-to–end workflow for automated distributed processing, training large-scale customized GPT-3 and T5 models, and deploying models to infer at scale. The validation of converged recipes that allow for training and inference is a key to unlocking the power and potential of LLMs. The hyperparameter tool makes it easy to customize models. It automatically searches for optimal hyperparameter configurations, performance, and training/inference for any given distributed GPU cluster configuration.
  • 19
    ALBERT Reviews
    ALBERT is a Transformer model that can be self-supervised and was trained on large amounts of English data. It does not need manual labelling and instead uses an automated process that generates inputs and labels from the raw text. It is trained with two distinct goals in mind. Masked Language Modeling is the first. This randomly masks 15% words in an input sentence and requires that the model predict them. This technique is different from autoregressive models such as GPT and RNNs in that it allows the model learn bidirectional sentence representations. Sentence Ordering Prediction is the second objective. This involves predicting the order of two consecutive text segments during pretraining.
  • 20
    Llama Reviews
    Llama (Large Language Model meta AI) is a state of the art foundational large language model that was created to aid researchers in this subfield. Llama allows researchers to use smaller, more efficient models to study these models. This further democratizes access to this rapidly-changing field. Because it takes far less computing power and resources than large language models, such as Llama, to test new approaches, validate other's work, and explore new uses, training smaller foundation models like Llama can be a desirable option. Foundation models are trained on large amounts of unlabeled data. This makes them perfect for fine-tuning for many tasks. We make Llama available in several sizes (7B-13B, 33B and 65B parameters), and also share a Llama card that explains how the model was built in line with our Responsible AI practices.
  • 21
    ERNIE 3.0 Titan Reviews
    Pre-trained models of language have achieved state-of the-art results for various Natural Language Processing (NLP). GPT-3 has demonstrated that scaling up language models pre-trained can further exploit their immense potential. Recently, a framework named ERNIE 3.0 for pre-training large knowledge enhanced models was proposed. This framework trained a model that had 10 billion parameters. ERNIE 3.0 performed better than the current state-of-the art models on a variety of NLP tasks. In order to explore the performance of scaling up ERNIE 3.0, we train a hundred-billion-parameter model called ERNIE 3.0 Titan with up to 260 billion parameters on the PaddlePaddle platform. We also design a self supervised adversarial and a controllable model language loss to make ERNIE Titan generate credible texts.
  • 22
    EXAONE Reviews
    EXAONE, a large-scale language model developed by LG AI Research, aims to nurture "Expert AI" across multiple domains. The Expert AI alliance was formed by leading companies from various fields in order to advance EXAONE's capabilities. Partner companies in the alliance will act as mentors and provide EXAONE with skills, knowledge, data, and other resources to help it gain expertise in relevant fields. EXAONE is akin to an advanced college student who has taken elective courses in general. It requires intensive training to become a specialist in a specific area. LG AI Research has already demonstrated EXAONE’s abilities in real-world applications such as Tilda AI human artist, which debuted at New York Fashion Week. AI applications have also been developed to summarize customer service conversations, and extract information from complex academic documents.
  • 23
    GradientJ Reviews
    GradientJ gives you everything you need to create large language models in minutes, and manage them for life. Save versions of prompts and compare them with benchmark examples to discover and maintain the best prompts. Chaining prompts and knowledge databases into complex APIs allows you to orchestrate and manage complex apps. Integrating your proprietary data with your models will improve their accuracy.
  • 24
    PanGu Chat Reviews
    PanGu Chat, an AI chatbot created by Huawei, is a powerful AI. PanGu Chat can answer questions and converse with you like ChatGPT.
  • 25
    LTM-1 Reviews
    Magic's LTM-1 provides context windows 50x larger than transformers. Magic has trained a Large Language Model that can take in huge amounts of context to generate suggestions. Magic, our coding assistant can now see all of your code. AI models can refer to more factual and explicit information with larger context windows. They can also reference their own actions history. This research will hopefully improve reliability and coherence.