Best Large Language Models for Visual Studio Code

Find and compare the best Large Language Models for Visual Studio Code in 2025

Use the comparison tool below to compare the top Large Language Models for Visual Studio Code on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    LM-Kit.NET Reviews
    Top Pick

    LM-Kit

    Free (Community) or $1000/year
    17 Ratings
    See Software
    Learn More
    LM-Kit.NET empowers developers working with C# and VB.NET to seamlessly incorporate both extensive and compact language models for tasks such as natural language comprehension, text creation, engaging in multi-turn conversations, and facilitating rapid on-device inference. Additionally, its vision language models enhance functionality by providing image analysis and captioning capabilities. The embedding models transform text into vector representations, enabling swift semantic searches. Furthermore, the LM-Lit catalog offers a comprehensive list of cutting-edge models, continuously updated, all within a streamlined toolkit that integrates effortlessly into your codebase without disclosing any AI origins to the end user.
  • 2
    BLACKBOX AI Reviews
    BLACKBOX AI is a powerful AI-driven platform that revolutionizes software development by providing a fully integrated AI Coding Agent with unique features such as voice interaction, direct GPU access, and remote parallel task processing. It simplifies complex coding tasks by converting Figma designs into production-ready code and transforming images into web apps with minimal manual effort. The platform supports seamless screen sharing within popular IDEs like VSCode, enhancing developer collaboration. Users can manage GitHub repositories remotely, running coding tasks entirely in the cloud for scalability and efficiency. BLACKBOX AI also enables app development with embedded PDF context, allowing the AI agent to understand and build around complex document data. Its image generation and editing tools offer creative flexibility alongside development features. The platform supports mobile device access, ensuring developers can work from anywhere. BLACKBOX AI aims to speed up the entire development lifecycle with automation and AI-enhanced workflows.
  • 3
    GPT-4.1 Reviews

    GPT-4.1

    OpenAI

    $2 per 1M tokens (input)
    GPT-4.1 represents a significant upgrade in generative AI, with notable advancements in coding, instruction adherence, and handling long contexts. This model supports up to 1 million tokens of context, allowing it to tackle complex, multi-step tasks across various domains. GPT-4.1 outperforms earlier models in key benchmarks, particularly in coding accuracy, and is designed to streamline workflows for developers and businesses by improving task completion speed and reliability.
  • 4
    StarCoder Reviews
    StarCoder and StarCoderBase represent advanced Large Language Models specifically designed for code, developed using openly licensed data from GitHub, which encompasses over 80 programming languages, Git commits, GitHub issues, and Jupyter notebooks. In a manner akin to LLaMA, we constructed a model with approximately 15 billion parameters trained on a staggering 1 trillion tokens. Furthermore, we tailored the StarCoderBase model with 35 billion Python tokens, leading to the creation of what we now refer to as StarCoder. Our evaluations indicated that StarCoderBase surpasses other existing open Code LLMs when tested against popular programming benchmarks and performs on par with or even exceeds proprietary models like code-cushman-001 from OpenAI, the original Codex model that fueled early iterations of GitHub Copilot. With an impressive context length exceeding 8,000 tokens, the StarCoder models possess the capability to handle more information than any other open LLM, thus paving the way for a variety of innovative applications. This versatility is highlighted by our ability to prompt the StarCoder models through a sequence of dialogues, effectively transforming them into dynamic technical assistants that can provide support in diverse programming tasks.
  • Previous
  • You're on page 1
  • Next