Best Key-Value Databases for Google Cloud Platform

Find and compare the best Key-Value Databases for Google Cloud Platform in 2025

Use the comparison tool below to compare the top Key-Value Databases for Google Cloud Platform on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Dragonfly Reviews

    Dragonfly

    DragonflyDB

    Free
    Dragonfly serves as a seamless substitute for Redis, offering enhanced performance while reducing costs. It is specifically engineered to harness the capabilities of contemporary cloud infrastructure, catering to the data requirements of today’s applications, thereby liberating developers from the constraints posed by conventional in-memory data solutions. Legacy software cannot fully exploit the advantages of modern cloud technology. With its optimization for cloud environments, Dragonfly achieves an impressive 25 times more throughput and reduces snapshotting latency by 12 times compared to older in-memory data solutions like Redis, making it easier to provide the immediate responses that users demand. The traditional single-threaded architecture of Redis leads to high expenses when scaling workloads. In contrast, Dragonfly is significantly more efficient in both computation and memory usage, potentially reducing infrastructure expenses by up to 80%. Initially, Dragonfly scales vertically, only transitioning to clustering when absolutely necessary at a very high scale, which simplifies the operational framework and enhances system reliability. Consequently, developers can focus more on innovation rather than infrastructure management.
  • 2
    Macrometa Reviews
    We provide a globally distributed real-time database, along with stream processing and computing capabilities for event-driven applications, utilizing as many as 175 edge data centers around the world. Developers and API creators appreciate our platform because it addresses the complex challenges of managing shared mutable state across hundreds of locations with both strong consistency and minimal latency. Macrometa empowers you to seamlessly enhance your existing infrastructure, allowing you to reposition portions of your application or the entire setup closer to your end users. This strategic placement significantly boosts performance, enhances user experiences, and ensures adherence to international data governance regulations. Serving as a serverless, streaming NoSQL database, Macrometa encompasses integrated pub/sub features, stream data processing, and a compute engine. You can establish a stateful data infrastructure, create stateful functions and containers suitable for prolonged workloads, and handle data streams in real time. While you focus on coding, we manage all operational tasks and orchestration, freeing you to innovate without constraints. As a result, our platform not only simplifies development but also optimizes resource utilization across global networks.
  • 3
    GigaSpaces Reviews
    Smart DIH is a data management platform that quickly serves applications with accurate, fresh and complete data, delivering high performance, ultra-low latency, and an always-on digital experience. Smart DIH decouples APIs from SoRs, replicating critical data, and making it available using event-driven architecture. Smart DIH enables drastically shorter development cycles of new digital services, and rapidly scales to serve millions of concurrent users – no matter which IT infrastructure or cloud topologies it relies on. XAP Skyline is a distributed in-memory development platform that delivers transactional consistency, combined with extreme event-based processing and microsecond latency. The platform fuels core business solutions that rely on instantaneous data, including online trading, real-time risk management and data processing for AI and large language models.
  • 4
    Google Cloud Bigtable Reviews
    Google Cloud Bigtable provides a fully managed, scalable NoSQL data service that can handle large operational and analytical workloads. Cloud Bigtable is fast and performant. It's the storage engine that grows with your data, from your first gigabyte up to a petabyte-scale for low latency applications and high-throughput data analysis. Seamless scaling and replicating: You can start with one cluster node and scale up to hundreds of nodes to support peak demand. Replication adds high availability and workload isolation to live-serving apps. Integrated and simple: Fully managed service that easily integrates with big data tools such as Dataflow, Hadoop, and Dataproc. Development teams will find it easy to get started with the support for the open-source HBase API standard.
  • 5
    Google Cloud Memorystore Reviews
    Enhance performance by utilizing a scalable, secure, and highly available in-memory service tailored for Redis and Memcached. Memorystore simplifies complex procedures associated with open source Redis and Memcached, such as ensuring high availability, managing failover, conducting patching, and monitoring, allowing developers to focus more on coding. You can begin with the most basic tier and smallest configuration, gradually expanding your instance with minimal disruption. Memorystore for Memcached has the capacity to manage clusters up to 5 TB, delivering millions of queries per second at remarkably low latency. In contrast, Memorystore for Redis instances are designed to be replicated across two zones, offering a service level agreement of 99.9% availability. Continuous monitoring and automatic failover mechanisms ensure that applications face minimal interruptions. You can select from two of the most widely used open source caching solutions to develop your applications. Memorystore provides full protocol compatibility for both Redis and Memcached, enabling you to choose the caching engine that best aligns with your budget and availability needs while maximizing your application's performance. By leveraging these features, developers can significantly improve their operational efficiency.
  • 6
    LevelDB Reviews
    LevelDB is a high-performance key-value storage library developed by Google, designed to maintain an ordered mapping between string keys and string values. The keys and values are treated as arbitrary byte arrays, and the stored data is organized in a sorted manner based on the keys. Users have the option to supply a custom comparison function to modify the default sorting behavior. The library allows for multiple changes to be grouped into a single atomic batch, ensuring data integrity during updates. Additionally, users can create a temporary snapshot for a consistent view of the data at any given moment. The library supports both forward and backward iteration through the stored data, enhancing flexibility during data access. Data is automatically compressed using the Snappy compression algorithm to optimize storage efficiency. Moreover, interactions with the external environment, such as file system operations, are managed through a virtual interface, giving users the ability to customize how the library interacts with the operating system. In practical applications, we utilize a database containing one million entries, where each entry consists of a 16-byte key and a 100-byte value. Notably, the values used in benchmarking compress to approximately half of their original size, allowing for significant space savings. We provide detailed performance metrics for sequential reads in both forward and reverse directions, as well as the effectiveness of random lookups, to showcase the library's capabilities. This comprehensive performance analysis aids developers in understanding how to optimize their use of LevelDB in various applications.
  • 7
    Cloudera Reviews
    Oversee and protect the entire data lifecycle from the Edge to AI across any cloud platform or data center. Functions seamlessly within all leading public cloud services as well as private clouds, providing a uniform public cloud experience universally. Unifies data management and analytical processes throughout the data lifecycle, enabling access to data from any location. Ensures the implementation of security measures, regulatory compliance, migration strategies, and metadata management in every environment. With a focus on open source, adaptable integrations, and compatibility with various data storage and computing systems, it enhances the accessibility of self-service analytics. This enables users to engage in integrated, multifunctional analytics on well-managed and protected business data, while ensuring a consistent experience across on-premises, hybrid, and multi-cloud settings. Benefit from standardized data security, governance, lineage tracking, and control, all while delivering the robust and user-friendly cloud analytics solutions that business users need, effectively reducing the reliance on unauthorized IT solutions. Additionally, these capabilities foster a collaborative environment where data-driven decision-making is streamlined and more efficient.
  • 8
    ArangoDB Reviews
    Store data in its native format for graph, document, and search purposes. Leverage a comprehensive query language that allows for rich access to this data. Map the data directly to the database and interact with it through optimal methods tailored for specific tasks, such as traversals, joins, searches, rankings, geospatial queries, and aggregations. Experience the benefits of polyglot persistence without incurring additional costs. Design, scale, and modify your architectures with ease to accommodate evolving requirements, all while minimizing effort. Merge the adaptability of JSON with advanced semantic search and graph technologies, enabling the extraction of features even from extensive datasets, thereby enhancing data analysis capabilities. This combination opens up new possibilities for handling complex data scenarios efficiently.
  • Previous
  • You're on page 1
  • Next