Best Image Annotation Tools of 2025

Use the comparison tool below to compare the top Image Annotation tools on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Supervisely Reviews
    The premier platform designed for the complete computer vision process allows you to evolve from image annotation to precise neural networks at speeds up to ten times quicker. Utilizing our exceptional data labeling tools, you can convert your images, videos, and 3D point clouds into top-notch training data. This enables you to train your models, monitor experiments, visualize results, and consistently enhance model predictions, all while constructing custom solutions within a unified environment. Our self-hosted option ensures data confidentiality, offers robust customization features, and facilitates seamless integration with your existing technology stack. This comprehensive solution for computer vision encompasses multi-format data annotation and management, large-scale quality control, and neural network training within an all-in-one platform. Crafted by data scientists for their peers, this powerful video labeling tool draws inspiration from professional video editing software and is tailored for machine learning applications and beyond. With our platform, you can streamline your workflow and significantly improve the efficiency of your computer vision projects.
  • 2
    Automaton AI Reviews
    With Automaton AI's ADVIT, users can effortlessly create, manage, and enhance high-quality training data alongside DNN models, all within a single platform. The tool automatically optimizes data and prepares it for various stages of the computer vision pipeline. It also automates data labeling and simplifies in-house data pipelines. Users can handle both structured and unstructured datasets, including video, image, and text, while performing automatic functions that refine data for each phase of the deep learning process. Once data is accurately labeled and undergoes quality assurance, users can initiate their own model training. DNN training requires hyperparameter adjustments, such as batch size and learning rate, to maximize efficiency. Additionally, the platform supports optimization and transfer learning on existing models to enhance overall accuracy. After training, users can seamlessly deploy their models into production. ADVIT also provides model versioning capabilities, allowing for real-time tracking of development and accuracy metrics. By utilizing a pre-trained DNN model for auto-labeling, users can further improve their model's accuracy, ensuring optimal outcomes throughout the entire machine learning lifecycle. This comprehensive solution not only streamlines the development process but also empowers users to achieve remarkable results in their projects.
  • Previous
  • You're on page 1
  • Next