Best Web-Based HPC Software of 2025 - Page 2

Find and compare the best Web-Based HPC software in 2025

Use the comparison tool below to compare the top Web-Based HPC software on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Fuzzball Reviews
    Fuzzball propels innovation among researchers and scientists by removing the complexities associated with infrastructure setup and management. It enhances the design and execution of high-performance computing (HPC) workloads, making the process more efficient. Featuring an intuitive graphical user interface, users can easily design, modify, and run HPC jobs. Additionally, it offers extensive control and automation of all HPC operations through a command-line interface. With automated data handling and comprehensive compliance logs, users can ensure secure data management. Fuzzball seamlessly integrates with GPUs and offers storage solutions both on-premises and in the cloud. Its human-readable, portable workflow files can be executed across various environments. CIQ’s Fuzzball redefines traditional HPC by implementing an API-first, container-optimized architecture. Operating on Kubernetes, it guarantees the security, performance, stability, and convenience that modern software and infrastructure demand. Furthermore, Fuzzball not only abstracts the underlying infrastructure but also automates the orchestration of intricate workflows, fostering improved efficiency and collaboration among teams. This innovative approach ultimately transforms how researchers and scientists tackle computational challenges.
  • 2
    Amazon EC2 P5 Instances Reviews
    Amazon's Elastic Compute Cloud (EC2) offers P5 instances that utilize NVIDIA H100 Tensor Core GPUs, alongside P5e and P5en instances featuring NVIDIA H200 Tensor Core GPUs, ensuring unmatched performance for deep learning and high-performance computing tasks. With these advanced instances, you can reduce the time to achieve results by as much as four times compared to earlier GPU-based EC2 offerings, while also cutting ML model training costs by up to 40%. This capability enables faster iteration on solutions, allowing businesses to reach the market more efficiently. P5, P5e, and P5en instances are ideal for training and deploying sophisticated large language models and diffusion models that drive the most intensive generative AI applications, which encompass areas like question-answering, code generation, video and image creation, and speech recognition. Furthermore, these instances can also support large-scale deployment of high-performance computing applications, facilitating advancements in fields such as pharmaceutical discovery, ultimately transforming how research and development are conducted in the industry.
  • 3
    Amazon EC2 UltraClusters Reviews
    Amazon EC2 UltraClusters allow for the scaling of thousands of GPUs or specialized machine learning accelerators like AWS Trainium, granting users immediate access to supercomputing-level performance. This service opens the door to supercomputing for developers involved in machine learning, generative AI, and high-performance computing, all through a straightforward pay-as-you-go pricing structure that eliminates the need for initial setup or ongoing maintenance expenses. Comprising thousands of accelerated EC2 instances placed within a specific AWS Availability Zone, UltraClusters utilize Elastic Fabric Adapter (EFA) networking within a petabit-scale nonblocking network. Such an architecture not only ensures high-performance networking but also facilitates access to Amazon FSx for Lustre, a fully managed shared storage solution based on a high-performance parallel file system that enables swift processing of large datasets with sub-millisecond latency. Furthermore, EC2 UltraClusters enhance scale-out capabilities for distributed machine learning training and tightly integrated HPC tasks, significantly decreasing training durations while maximizing efficiency. This transformative technology is paving the way for groundbreaking advancements in various computational fields.
  • 4
    AWS HPC Reviews
    AWS High Performance Computing (HPC) services enable users to run extensive simulations and deep learning tasks in the cloud, offering nearly limitless computing power, advanced file systems, and high-speed networking capabilities. This comprehensive set of services fosters innovation by providing a diverse array of cloud-based resources, such as machine learning and analytics tools, which facilitate swift design and evaluation of new products. Users can achieve peak operational efficiency thanks to the on-demand nature of these computing resources, allowing them to concentrate on intricate problem-solving without the limitations of conventional infrastructure. AWS HPC offerings feature the Elastic Fabric Adapter (EFA) for optimized low-latency and high-bandwidth networking, AWS Batch for efficient scaling of computing tasks, AWS ParallelCluster for easy cluster setup, and Amazon FSx for delivering high-performance file systems. Collectively, these services create a flexible and scalable ecosystem that is well-suited for a variety of HPC workloads, empowering organizations to push the boundaries of what’s possible in their respective fields. As a result, users can experience greatly enhanced performance and productivity in their computational endeavors.
  • 5
    AWS Elastic Fabric Adapter (EFA) Reviews
    The Elastic Fabric Adapter (EFA) serves as a specialized network interface for Amazon EC2 instances, allowing users to efficiently run applications that demand high inter-node communication at scale within the AWS environment. By utilizing a custom-designed operating system (OS) that circumvents traditional hardware interfaces, EFA significantly boosts the performance of communications between instances, which is essential for effectively scaling such applications. This technology facilitates the scaling of High-Performance Computing (HPC) applications that utilize the Message Passing Interface (MPI) and Machine Learning (ML) applications that rely on the NVIDIA Collective Communications Library (NCCL) to thousands of CPUs or GPUs. Consequently, users can achieve the same high application performance found in on-premises HPC clusters while benefiting from the flexible and on-demand nature of the AWS cloud infrastructure. EFA can be activated as an optional feature for EC2 networking without incurring any extra charges, making it accessible for a wide range of use cases. Additionally, it seamlessly integrates with the most popular interfaces, APIs, and libraries for inter-node communication needs, enhancing its utility for diverse applications.
  • 6
    AWS ParallelCluster Reviews
    AWS ParallelCluster is a free, open-source tool designed for efficient management and deployment of High-Performance Computing (HPC) clusters within the AWS environment. It streamlines the configuration of essential components such as compute nodes, shared filesystems, and job schedulers, while accommodating various instance types and job submission queues. Users have the flexibility to engage with ParallelCluster using a graphical user interface, command-line interface, or API, which allows for customizable cluster setups and oversight. The tool also works seamlessly with job schedulers like AWS Batch and Slurm, making it easier to transition existing HPC workloads to the cloud with minimal adjustments. Users incur no additional costs for the tool itself, only paying for the AWS resources their applications utilize. With AWS ParallelCluster, users can effectively manage their computing needs through a straightforward text file that allows for the modeling, provisioning, and dynamic scaling of necessary resources in a secure and automated fashion. This ease of use significantly enhances productivity and optimizes resource allocation for various computational tasks.
  • 7
    Amazon EC2 G4 Instances Reviews
    Amazon EC2 G4 instances are specifically designed to enhance the performance of machine learning inference and applications that require high graphics capabilities. Users can select between NVIDIA T4 GPUs (G4dn) and AMD Radeon Pro V520 GPUs (G4ad) according to their requirements. The G4dn instances combine NVIDIA T4 GPUs with bespoke Intel Cascade Lake CPUs, ensuring an optimal mix of computational power, memory, and networking bandwidth. These instances are well-suited for tasks such as deploying machine learning models, video transcoding, game streaming, and rendering graphics. On the other hand, G4ad instances, equipped with AMD Radeon Pro V520 GPUs and 2nd-generation AMD EPYC processors, offer a budget-friendly option for handling graphics-intensive workloads. Both instance types utilize Amazon Elastic Inference, which permits users to add economical GPU-powered inference acceleration to Amazon EC2, thereby lowering costs associated with deep learning inference. They come in a range of sizes tailored to meet diverse performance demands and seamlessly integrate with various AWS services, including Amazon SageMaker, Amazon ECS, and Amazon EKS. Additionally, this versatility makes G4 instances an attractive choice for organizations looking to leverage cloud-based machine learning and graphics processing capabilities.
  • 8
    QumulusAI Reviews
    QumulusAI provides unparalleled supercomputing capabilities, merging scalable high-performance computing (HPC) with autonomous data centers to eliminate bottlenecks and propel the advancement of AI. By democratizing access to AI supercomputing, QumulusAI dismantles the limitations imposed by traditional HPC and offers the scalable, high-performance solutions that modern AI applications require now and in the future. With no virtualization latency and no disruptive neighbors, users gain dedicated, direct access to AI servers that are fine-tuned with the latest NVIDIA GPUs (H200) and cutting-edge Intel/AMD CPUs. Unlike legacy providers that utilize a generic approach, QumulusAI customizes HPC infrastructure to align specifically with your unique workloads. Our partnership extends through every phase—from design and deployment to continuous optimization—ensuring that your AI initiatives receive precisely what they need at every stage of development. We maintain ownership of the entire technology stack, which translates to superior performance, enhanced control, and more predictable expenses compared to other providers that rely on third-party collaborations. This comprehensive approach positions QumulusAI as a leader in the supercomputing space, ready to adapt to the evolving demands of your projects.
  • 9
    FieldView Reviews

    FieldView

    Intelligent Light

    In the last twenty years, there have been significant advancements in software technologies, and high-performance computing (HPC) has progressed exponentially. However, our capacity to interpret simulation results has not experienced a similar evolution. Traditional methods of visualizing data, such as creating plots and animations, fail to keep pace when faced with extremely large multi-billion cell meshes or extensive simulations involving tens of thousands of timesteps. The process of evaluating solutions can be greatly expedited by generating features and quantitative metrics through techniques like eigen analysis or machine learning. Furthermore, the user-friendly FieldView desktop software is seamlessly integrated with the robust capabilities of the VisIt Prime backend, enhancing the overall analysis experience. This integration allows for a more efficient workflow, enabling researchers to focus on interpreting results rather than being bogged down by outdated visualization methods.
  • 10
    NVIDIA NGC Reviews
    NVIDIA GPU Cloud (NGC) serves as a cloud platform that harnesses GPU acceleration for deep learning and scientific computations. It offers a comprehensive catalog of fully integrated containers for deep learning frameworks designed to optimize performance on NVIDIA GPUs, whether in single or multi-GPU setups. Additionally, the NVIDIA train, adapt, and optimize (TAO) platform streamlines the process of developing enterprise AI applications by facilitating quick model adaptation and refinement. Through a user-friendly guided workflow, organizations can fine-tune pre-trained models with their unique datasets, enabling them to create precise AI models in mere hours instead of the traditional months, thereby reducing the necessity for extensive training periods and specialized AI knowledge. If you're eager to dive into the world of containers and models on NGC, you’ve found the ideal starting point. Furthermore, NGC's Private Registries empower users to securely manage and deploy their proprietary assets, enhancing their AI development journey.
  • 11
    Bright Cluster Manager Reviews
    Bright Cluster Manager offers a variety of machine learning frameworks including Torch, Tensorflow and Tensorflow to simplify your deep-learning projects. Bright offers a selection the most popular Machine Learning libraries that can be used to access datasets. These include MLPython and NVIDIA CUDA Deep Neural Network Library (cuDNN), Deep Learning GPU Trainer System (DIGITS), CaffeOnSpark (a Spark package that allows deep learning), and MLPython. Bright makes it easy to find, configure, and deploy all the necessary components to run these deep learning libraries and frameworks. There are over 400MB of Python modules to support machine learning packages. We also include the NVIDIA hardware drivers and CUDA (parallel computer platform API) drivers, CUB(CUDA building blocks), NCCL (library standard collective communication routines).
  • 12
    Moab HPC Suite Reviews
    Moab®, HPC Suite automates the management, monitoring, reporting, and scheduling of large-scale HPC workloads. Its intelligence engine, which is patent-pending, uses multi-dimensional policies to optimize workload start times and run time on different resources. These policies balance high utilization goals and throughput with competing workload priorities, SLA requirements, and thus accomplish more work in less time and in a better priority order. Moab HPC Suite maximizes the value and use of HPC systems, while reducing complexity and management costs.