Business Software for PyTorch

  • 1
    Giskard Reviews
    Giskard provides interfaces to AI & Business teams for evaluating and testing ML models using automated tests and collaborative feedback. Giskard accelerates teamwork to validate ML model validation and gives you peace-of-mind to eliminate biases, drift, or regression before deploying ML models into production.
  • 2
    TrueFoundry Reviews

    TrueFoundry

    TrueFoundry

    $5 per month
    TrueFoundry is a cloud-native platform-as-a-service for machine learning training and deployment built on Kubernetes, designed to empower machine learning teams to train and launch models with the efficiency and reliability typically associated with major tech companies, all while ensuring scalability to reduce costs and speed up production release. By abstracting the complexities of Kubernetes, it allows data scientists to work in a familiar environment without the overhead of managing infrastructure. Additionally, it facilitates the seamless deployment and fine-tuning of large language models, prioritizing security and cost-effectiveness throughout the process. TrueFoundry features an open-ended, API-driven architecture that integrates smoothly with internal systems, enables deployment on a company's existing infrastructure, and upholds stringent data privacy and DevSecOps standards, ensuring that teams can innovate without compromising on security. This comprehensive approach not only streamlines workflows but also fosters collaboration among teams, ultimately driving faster and more efficient model deployment.
  • 3
    Superwise Reviews
    Achieve in minutes what previously took years to develop with our straightforward, adaptable, scalable, and secure machine learning monitoring solution. You’ll find all the tools necessary to deploy, sustain, and enhance machine learning in a production environment. Superwise offers an open platform that seamlessly integrates with any machine learning infrastructure and connects with your preferred communication tools. If you wish to explore further, Superwise is designed with an API-first approach, ensuring that every feature is available through our APIs, all accessible from the cloud platform of your choice. With Superwise, you gain complete self-service control over your machine learning monitoring. You can configure metrics and policies via our APIs and SDK, or you can simply choose from a variety of monitoring templates to set sensitivity levels, conditions, and alert channels that suit your needs. Experience the benefits of Superwise for yourself, or reach out to us for more information. Effortlessly create alerts using Superwise’s policy templates and monitoring builder, selecting from numerous pre-configured monitors that address issues like data drift and fairness, or tailor policies to reflect your specialized knowledge and insights. The flexibility and ease of use provided by Superwise empower users to effectively manage their machine learning models.
  • 4
    TorchMetrics Reviews

    TorchMetrics

    TorchMetrics

    Free
    TorchMetrics comprises over 90 implementations of metrics designed for PyTorch, along with a user-friendly API that allows for the creation of custom metrics. It provides a consistent interface that enhances reproducibility while minimizing redundant code. The library is suitable for distributed training and has undergone thorough testing to ensure reliability. It features automatic batch accumulation and seamless synchronization across multiple devices. You can integrate TorchMetrics into any PyTorch model or utilize it within PyTorch Lightning for added advantages, ensuring that your data aligns with the same device as your metrics at all times. Additionally, you can directly log Metric objects in Lightning, further reducing boilerplate code. Much like torch.nn, the majority of metrics are available in both class-based and functional formats. The functional versions consist of straightforward Python functions that accept torch.tensors as inputs and yield the corresponding metric as a torch.tensor output. Virtually all functional metrics come with an equivalent class-based metric, providing users with flexible options for implementation. This versatility allows developers to choose the approach that best fits their coding style and project requirements.
  • 5
    HStreamDB Reviews
    A streaming database is specifically designed to efficiently ingest, store, process, and analyze large volumes of data streams. This advanced data infrastructure integrates messaging, stream processing, and storage to enable real-time value extraction from your data. It continuously handles vast amounts of data generated by diverse sources, including sensors from IoT devices. Data streams are securely stored in a dedicated distributed streaming data storage cluster that can manage millions of streams. By subscribing to topics in HStreamDB, users can access and consume data streams in real-time at speeds comparable to Kafka. The system also allows for permanent storage of data streams, enabling users to replay and analyze them whenever needed. With a familiar SQL syntax, you can process these data streams based on event-time, similar to querying data in a traditional relational database. This functionality enables users to filter, transform, aggregate, and even join multiple streams seamlessly, enhancing the overall data analysis experience. Ultimately, the integration of these features ensures that organizations can leverage their data effectively and make timely decisions.
  • 6
    Akira AI Reviews

    Akira AI

    Akira AI

    $15 per month
    Akira.ai offers organizations a suite of Agentic AI, which comprises tailored AI agents aimed at refining and automating intricate workflows across multiple sectors. These agents work alongside human teams to improve productivity, facilitate prompt decision-making, and handle monotonous tasks, including data analysis, HR operations, and incident management. The platform is designed to seamlessly integrate with current systems such as CRMs and ERPs, enabling a smooth shift to AI-driven processes without disruption. By implementing Akira’s AI agents, businesses can enhance their operational efficiency, accelerate decision-making, and foster innovation in industries such as finance, IT, and manufacturing. Ultimately, this collaboration between AI and human teams paves the way for significant advancements in productivity and operational excellence.
  • 7
    ZenML Reviews
    Simplify your MLOps pipelines. ZenML allows you to manage, deploy and scale any infrastructure. ZenML is open-source and free. Two simple commands will show you the magic. ZenML can be set up in minutes and you can use all your existing tools. ZenML interfaces ensure your tools work seamlessly together. Scale up your MLOps stack gradually by changing components when your training or deployment needs change. Keep up to date with the latest developments in the MLOps industry and integrate them easily. Define simple, clear ML workflows and save time by avoiding boilerplate code or infrastructure tooling. Write portable ML codes and switch from experiments to production in seconds. ZenML's plug and play integrations allow you to manage all your favorite MLOps software in one place. Prevent vendor lock-in by writing extensible, tooling-agnostic, and infrastructure-agnostic code.
  • 8
    Deep Lake Reviews

    Deep Lake

    activeloop

    $995 per month
    While generative AI is a relatively recent development, our efforts over the last five years have paved the way for this moment. Deep Lake merges the strengths of data lakes and vector databases to craft and enhance enterprise-level solutions powered by large language models, allowing for continual refinement. However, vector search alone does not address retrieval challenges; a serverless query system is necessary for handling multi-modal data that includes embeddings and metadata. You can perform filtering, searching, and much more from either the cloud or your local machine. This platform enables you to visualize and comprehend your data alongside its embeddings, while also allowing you to monitor and compare different versions over time to enhance both your dataset and model. Successful enterprises are not solely reliant on OpenAI APIs, as it is essential to fine-tune your large language models using your own data. Streamlining data efficiently from remote storage to GPUs during model training is crucial. Additionally, Deep Lake datasets can be visualized directly in your web browser or within a Jupyter Notebook interface. You can quickly access various versions of your data, create new datasets through on-the-fly queries, and seamlessly stream them into frameworks like PyTorch or TensorFlow, thus enriching your data processing capabilities. This ensures that users have the flexibility and tools needed to optimize their AI-driven projects effectively.
  • 9
    DeepSpeed Reviews
    DeepSpeed is an open-source library focused on optimizing deep learning processes for PyTorch. Its primary goal is to enhance efficiency by minimizing computational power and memory requirements while facilitating the training of large-scale distributed models with improved parallel processing capabilities on available hardware. By leveraging advanced techniques, DeepSpeed achieves low latency and high throughput during model training. This tool can handle deep learning models with parameter counts exceeding one hundred billion on contemporary GPU clusters, and it is capable of training models with up to 13 billion parameters on a single graphics processing unit. Developed by Microsoft, DeepSpeed is specifically tailored to support distributed training for extensive models, and it is constructed upon the PyTorch framework, which excels in data parallelism. Additionally, the library continuously evolves to incorporate cutting-edge advancements in deep learning, ensuring it remains at the forefront of AI technology.
  • 10
    PostgresML Reviews

    PostgresML

    PostgresML

    $.60 per hour
    PostgresML serves as a comprehensive platform integrated within a PostgreSQL extension, allowing users to construct models that are not only simpler and faster but also more scalable directly within their database environment. Users can delve into the SDK and utilize open-source models available in our hosted database for experimentation. The platform enables a seamless automation of the entire process, from generating embeddings to indexing and querying, which facilitates the creation of efficient knowledge-based chatbots. By utilizing various natural language processing and machine learning techniques, including vector search and personalized embeddings, users can enhance their search capabilities significantly. Additionally, it empowers businesses to analyze historical data through time series forecasting, thereby unearthing vital insights. With the capability to develop both statistical and predictive models, users can harness the full potential of SQL alongside numerous regression algorithms. The integration of machine learning at the database level allows for quicker result retrieval and more effective fraud detection. By abstracting the complexities of data management throughout the machine learning and AI lifecycle, PostgresML permits users to execute machine learning and large language models directly on a PostgreSQL database, making it a robust tool for data-driven decision-making. Ultimately, this innovative approach streamlines processes and fosters a more efficient use of data resources.
  • 11
    Yandex DataSphere Reviews

    Yandex DataSphere

    Yandex.Cloud

    $0.095437 per GB
    Select the necessary configuration and resources for particular code segments in your ongoing project, as it only takes a few seconds to implement changes in a training scenario and secure the results. Opt for the appropriate setup for computational resources to initiate model training in mere seconds, allowing everything to be generated automatically without the hassle of infrastructure management. You can choose between serverless or dedicated operating modes, and efficiently manage project data, saving it to datasets while establishing connections to databases, object storage, or other repositories, all from a single interface. Collaborate with teammates globally to develop a machine learning model, share the project, and allocate budgets for teams throughout your organization. Launch your machine learning initiatives in minutes without requiring developer assistance, and conduct experiments that enable the simultaneous release of various model versions. This streamlined approach fosters innovation and enhances collaboration among team members, ensuring that everyone is on the same page.
  • 12
    Unify AI Reviews

    Unify AI

    Unify AI

    $1 per credit
    Unlock the potential of selecting the ideal LLM tailored to your specific requirements while enhancing quality, speed, and cost-effectiveness. With a single API key, you can seamlessly access every LLM from various providers through a standardized interface. You have the flexibility to set your own parameters for cost, latency, and output speed, along with the ability to establish a personalized quality metric. Customize your router to align with your individual needs, allowing for systematic query distribution to the quickest provider based on the latest benchmark data, which is refreshed every 10 minutes to ensure accuracy. Begin your journey with Unify by following our comprehensive walkthrough that introduces you to the functionalities currently at your disposal as well as our future plans. By simply creating a Unify account, you can effortlessly connect to all models from our supported providers using one API key. Our router intelligently balances output quality, speed, and cost according to your preferences, while employing a neural scoring function to anticipate the effectiveness of each model in addressing your specific prompts. This meticulous approach ensures that you receive the best possible outcomes tailored to your unique needs and expectations.
  • 13
    CodeQwen Reviews
    CodeQwen serves as the coding counterpart to Qwen, which is a series of large language models created by the Qwen team at Alibaba Cloud. Built on a transformer architecture that functions solely as a decoder, this model has undergone extensive pre-training using a vast dataset of code. It showcases robust code generation abilities and demonstrates impressive results across various benchmarking tests. With the capacity to comprehend and generate long contexts of up to 64,000 tokens, CodeQwen accommodates 92 programming languages and excels in tasks such as text-to-SQL queries and debugging. Engaging with CodeQwen is straightforward—you can initiate a conversation with just a few lines of code utilizing transformers. The foundation of this interaction relies on constructing the tokenizer and model using pre-existing methods, employing the generate function to facilitate dialogue guided by the chat template provided by the tokenizer. In alignment with our established practices, we implement the ChatML template tailored for chat models. This model adeptly completes code snippets based on the prompts it receives, delivering responses without the need for any further formatting adjustments, thereby enhancing the user experience. The seamless integration of these elements underscores the efficiency and versatility of CodeQwen in handling diverse coding tasks.
  • 14
    ApertureDB Reviews

    ApertureDB

    ApertureDB

    $0.33 per hour
    Gain a competitive advantage by leveraging the capabilities of vector search technology. Optimize your AI/ML pipeline processes, minimize infrastructure expenses, and maintain a leading position with a remarkable improvement in time-to-market efficiency, achieving speeds up to 10 times faster. Eliminate data silos with ApertureDB's comprehensive multimodal data management system, empowering your AI teams to drive innovation. Establish and expand intricate multimodal data infrastructures capable of handling billions of objects across your organization in mere days instead of months. By integrating multimodal data, sophisticated vector search, and a groundbreaking knowledge graph, along with a robust query engine, you can accelerate the development of AI applications at scale for your enterprise. ApertureDB promises to boost the efficiency of your AI/ML teams and enhance the returns on your AI investments, utilizing all available data effectively. Experience it firsthand by trying it for free or arranging a demo to witness its capabilities. Discover pertinent images by leveraging labels, geolocation, and specific regions of interest, while also preparing extensive multi-modal medical scans for machine learning and clinical research endeavors. The platform not only streamlines data management but also enhances collaboration and insight generation across your organization.
  • 15
    Keepsake Reviews
    Keepsake is a Python library that is open-source and specifically designed for managing version control in machine learning experiments and models. It allows users to automatically monitor various aspects such as code, hyperparameters, training datasets, model weights, performance metrics, and Python dependencies, ensuring comprehensive documentation and reproducibility of the entire machine learning process. By requiring only minimal code changes, Keepsake easily integrates into existing workflows, permitting users to maintain their usual training routines while it automatically archives code and model weights to storage solutions like Amazon S3 or Google Cloud Storage. This capability simplifies the process of retrieving code and weights from previous checkpoints, which is beneficial for re-training or deploying models. Furthermore, Keepsake is compatible with a range of machine learning frameworks, including TensorFlow, PyTorch, scikit-learn, and XGBoost, enabling efficient saving of files and dictionaries. In addition to these features, it provides tools for experiment comparison, allowing users to assess variations in parameters, metrics, and dependencies across different experiments, enhancing the overall analysis and optimization of machine learning projects. Overall, Keepsake streamlines the experimentation process, making it easier for practitioners to manage and evolve their machine learning workflows effectively.
  • 16
    Guild AI Reviews
    Guild AI serves as an open-source toolkit for tracking experiments, crafted to introduce systematic oversight into machine learning processes, thereby allowing users to enhance model creation speed and quality. By automatically documenting every facet of training sessions as distinct experiments, it promotes thorough tracking and evaluation. Users can conduct comparisons and analyses of different runs, which aids in refining their understanding and progressively enhancing their models. The toolkit also streamlines hyperparameter tuning via advanced algorithms that are executed through simple commands, doing away with the necessity for intricate trial setups. Furthermore, it facilitates the automation of workflows, which not only speeds up development but also minimizes errors while yielding quantifiable outcomes. Guild AI is versatile, functioning on all major operating systems and integrating effortlessly with pre-existing software engineering tools. In addition to this, it offers support for a range of remote storage solutions, such as Amazon S3, Google Cloud Storage, Azure Blob Storage, and SSH servers, making it a highly adaptable choice for developers. This flexibility ensures that users can tailor their workflows to fit their specific needs, further enhancing the toolkit’s utility in diverse machine learning environments.
  • 17
    NVIDIA TensorRT Reviews
    NVIDIA TensorRT is a comprehensive suite of APIs designed for efficient deep learning inference, which includes a runtime for inference and model optimization tools that ensure minimal latency and maximum throughput in production scenarios. Leveraging the CUDA parallel programming architecture, TensorRT enhances neural network models from all leading frameworks, adjusting them for reduced precision while maintaining high accuracy, and facilitating their deployment across a variety of platforms including hyperscale data centers, workstations, laptops, and edge devices. It utilizes advanced techniques like quantization, fusion of layers and tensors, and precise kernel tuning applicable to all NVIDIA GPU types, ranging from edge devices to powerful data centers. Additionally, the TensorRT ecosystem features TensorRT-LLM, an open-source library designed to accelerate and refine the inference capabilities of contemporary large language models on the NVIDIA AI platform, allowing developers to test and modify new LLMs efficiently through a user-friendly Python API. This innovative approach not only enhances performance but also encourages rapid experimentation and adaptation in the evolving landscape of AI applications.
  • 18
    Google AI Edge Reviews
    Google AI Edge presents an extensive range of tools and frameworks aimed at simplifying the integration of artificial intelligence into mobile, web, and embedded applications. By facilitating on-device processing, it minimizes latency, supports offline capabilities, and keeps data secure and local. Its cross-platform compatibility ensures that the same AI model can operate smoothly across various embedded systems. Additionally, it boasts multi-framework support, accommodating models developed in JAX, Keras, PyTorch, and TensorFlow. Essential features include low-code APIs through MediaPipe for standard AI tasks, which enable rapid incorporation of generative AI, as well as functionalities for vision, text, and audio processing. Users can visualize their model's evolution through conversion and quantification processes, while also overlaying results to diagnose performance issues. The platform encourages exploration, debugging, and comparison of models in a visual format, allowing for easier identification of critical hotspots. Furthermore, it enables users to view both comparative and numerical performance metrics, enhancing the debugging process and improving overall model optimization. This powerful combination of features positions Google AI Edge as a pivotal resource for developers aiming to leverage AI in their applications.
  • 19
    Hugging Face Transformers Reviews
    Transformers is a versatile library that includes pretrained models for natural language processing, computer vision, audio, and multimodal tasks, facilitating both inference and training. With the Transformers library, you can effectively train models tailored to your specific data, create inference applications, and utilize large language models for text generation. Visit the Hugging Face Hub now to discover a suitable model and leverage Transformers to kickstart your projects immediately. This library provides a streamlined and efficient inference class that caters to various machine learning tasks, including text generation, image segmentation, automatic speech recognition, and document question answering, among others. Additionally, it features a robust trainer that incorporates advanced capabilities like mixed precision, torch.compile, and FlashAttention, making it ideal for both training and distributed training of PyTorch models. The library ensures rapid text generation through large language models and vision-language models, and each model is constructed from three fundamental classes (configuration, model, and preprocessor), allowing for quick deployment in either inference or training scenarios. Overall, Transformers empowers users with the tools needed to create sophisticated machine learning solutions with ease and efficiency.
  • 20
    Flower Reviews
    Flower is a federated learning framework that is open-source and aims to make the creation and implementation of machine learning models across distributed data sources more straightforward. By enabling the training of models on data stored on individual devices or servers without the need to transfer that data, it significantly boosts privacy and minimizes bandwidth consumption. The framework is compatible with an array of popular machine learning libraries such as PyTorch, TensorFlow, Hugging Face Transformers, scikit-learn, and XGBoost, and it works seamlessly with various cloud platforms including AWS, GCP, and Azure. Flower offers a high degree of flexibility with its customizable strategies and accommodates both horizontal and vertical federated learning configurations. Its architecture is designed for scalability, capable of managing experiments that involve tens of millions of clients effectively. Additionally, Flower incorporates features geared towards privacy preservation, such as differential privacy and secure aggregation, ensuring that sensitive data remains protected throughout the learning process. This comprehensive approach makes Flower a robust choice for organizations looking to leverage federated learning in their machine learning initiatives.
  • 21
    NVIDIA FLARE Reviews
    NVIDIA FLARE, which stands for Federated Learning Application Runtime Environment, is a versatile, open-source SDK designed to enhance federated learning across various sectors, such as healthcare, finance, and the automotive industry. This platform enables secure and privacy-focused AI model training by allowing different parties to collaboratively develop models without the need to share sensitive raw data. Supporting a range of machine learning frameworks—including PyTorch, TensorFlow, RAPIDS, and XGBoost—FLARE seamlessly integrates into existing processes. Its modular architecture not only fosters customization but also ensures scalability, accommodating both horizontal and vertical federated learning methods. This SDK is particularly well-suited for applications that demand data privacy and adherence to regulations, including fields like medical imaging and financial analytics. Users can conveniently access and download FLARE through the NVIDIA NVFlare repository on GitHub and PyPi, making it readily available for implementation in diverse projects. Overall, FLARE represents a significant advancement in the pursuit of privacy-preserving AI solutions.
  • 22
    LiteRT Reviews
    LiteRT, previously known as TensorFlow Lite, is an advanced runtime developed by Google that provides high-performance capabilities for artificial intelligence on devices. This platform empowers developers to implement machine learning models on multiple devices and microcontrollers with ease. Supporting models from prominent frameworks like TensorFlow, PyTorch, and JAX, LiteRT converts these models into the FlatBuffers format (.tflite) for optimal inference efficiency on devices. Among its notable features are minimal latency, improved privacy by handling data locally, smaller model and binary sizes, and effective power management. The runtime also provides SDKs in various programming languages, including Java/Kotlin, Swift, Objective-C, C++, and Python, making it easier to incorporate into a wide range of applications. To enhance performance on compatible devices, LiteRT utilizes hardware acceleration through delegates such as GPU and iOS Core ML. The upcoming LiteRT Next, which is currently in its alpha phase, promises to deliver a fresh set of APIs aimed at simplifying the process of on-device hardware acceleration, thereby pushing the boundaries of mobile AI capabilities even further. With these advancements, developers can expect more seamless integration and performance improvements in their applications.
  • 23
    Intel Tiber AI Studio Reviews
    Intel® Tiber™ AI Studio serves as an all-encompassing machine learning operating system designed to streamline and unify the development of artificial intelligence. This robust platform accommodates a diverse array of AI workloads and features a hybrid multi-cloud infrastructure that enhances the speed of ML pipeline creation, model training, and deployment processes. By incorporating native Kubernetes orchestration and a meta-scheduler, Tiber™ AI Studio delivers unparalleled flexibility for managing both on-premises and cloud resources. Furthermore, its scalable MLOps framework empowers data scientists to seamlessly experiment, collaborate, and automate their machine learning workflows, all while promoting efficient and cost-effective resource utilization. This innovative approach not only boosts productivity but also fosters a collaborative environment for teams working on AI projects.
  • 24
    Collimator Reviews
    Collimator is a simulation and modeling platform for hybrid dynamical system. Engineers can design and test complex, mission-critical systems in a reliable, secure, fast, and intuitive way with Collimator. Our customers are control system engineers from the electrical, mechanical, and control sectors. They use Collimator to improve productivity, performance, and collaborate more effectively. Our out-of-the-box features include an intuitive block diagram editor, Python blocks for developing custom algorithms, Jupyter notebooks for optimizing their systems, high performance computing in cloud, and role-based access controls.
  • 25
    Lightning AI Reviews

    Lightning AI

    Lightning AI

    $10 per credit
    Leverage our platform to create AI products, train, fine-tune, and deploy models in the cloud while eliminating concerns about infrastructure, cost management, scaling, and other technical challenges. With our prebuilt, fully customizable, and modular components, you can focus on the scientific aspects rather than the engineering complexities. A Lightning component organizes your code to operate efficiently in the cloud, autonomously managing infrastructure, cloud expenses, and additional requirements. Benefit from over 50 optimizations designed to minimize cloud costs and accelerate AI deployment from months to mere weeks. Enjoy the advantages of enterprise-grade control combined with the simplicity of consumer-level interfaces, allowing you to enhance performance, cut expenses, and mitigate risks effectively. Don’t settle for a mere demonstration; turn your ideas into reality by launching the next groundbreaking GPT startup, diffusion venture, or cloud SaaS ML service in just days. Empower your vision with our tools and take significant strides in the AI landscape.