Business Software for NVIDIA TensorRT

Top Software that integrates with NVIDIA TensorRT

  • 1
    TensorFlow Reviews
    TensorFlow is a comprehensive open-source machine learning platform that covers the entire process from development to deployment. This platform boasts a rich and adaptable ecosystem featuring various tools, libraries, and community resources, empowering researchers to advance the field of machine learning while allowing developers to create and implement ML-powered applications with ease. With intuitive high-level APIs like Keras and support for eager execution, users can effortlessly build and refine ML models, facilitating quick iterations and simplifying debugging. The flexibility of TensorFlow allows for seamless training and deployment of models across various environments, whether in the cloud, on-premises, within browsers, or directly on devices, regardless of the programming language utilized. Its straightforward and versatile architecture supports the transformation of innovative ideas into practical code, enabling the development of cutting-edge models that can be published swiftly. Overall, TensorFlow provides a powerful framework that encourages experimentation and accelerates the machine learning process.
  • 2
    MATLAB Reviews
    Top Pick
    MATLAB® offers a desktop environment specifically optimized for iterative design and analysis, paired with a programming language that allows for straightforward expression of matrix and array mathematics. It features the Live Editor, which enables users to create scripts that merge code, output, and formatted text within an interactive notebook. The toolboxes provided by MATLAB are meticulously developed, thoroughly tested, and comprehensively documented. Additionally, MATLAB applications allow users to visualize how various algorithms interact with their data. You can refine your results through repeated iterations and then easily generate a MATLAB program to replicate or automate your processes. The platform also allows for scaling analyses across clusters, GPUs, and cloud environments with minimal modifications to your existing code. There is no need to overhaul your programming practices or master complex big data techniques. You can automatically convert MATLAB algorithms into C/C++, HDL, and CUDA code, enabling execution on embedded processors or FPGA/ASIC systems. Furthermore, when used in conjunction with Simulink, MATLAB enhances the support for Model-Based Design methodologies, making it a versatile tool for engineers and researchers alike. This adaptability makes MATLAB an essential resource for tackling a wide range of computational challenges.
  • 3
    Dataoorts GPU Cloud Reviews
    Dataoorts GPU Cloud was built for AI. Dataoorts offers GC2 and a X-Series GPU instance to help you excel in your development tasks. Dataoorts GPU instances ensure that computational power is available to everyone, everywhere. Dataoorts can help you with your training, scaling and deployment tasks. Serverless computing allows you to create your own inference endpoint API cost you just $5 Per month.
  • 4
    Python Reviews
    At the heart of extensible programming lies the definition of functions. Python supports both mandatory and optional parameters, keyword arguments, and even allows for arbitrary lists of arguments. Regardless of whether you're just starting out in programming or you have years of experience, Python is accessible and straightforward to learn. This programming language is particularly welcoming for beginners, while still offering depth for those familiar with other programming environments. The subsequent sections provide an excellent foundation to embark on your Python programming journey! The vibrant community organizes numerous conferences and meetups for collaborative coding and sharing ideas. Additionally, Python's extensive documentation serves as a valuable resource, and the mailing lists keep users connected. The Python Package Index (PyPI) features a vast array of third-party modules that enrich the Python experience. With both the standard library and community-contributed modules, Python opens the door to limitless programming possibilities, making it a versatile choice for developers of all levels.
  • 5
    PyTorch Reviews
    Effortlessly switch between eager and graph modes using TorchScript, while accelerating your journey to production with TorchServe. The torch-distributed backend facilitates scalable distributed training and enhances performance optimization for both research and production environments. A comprehensive suite of tools and libraries enriches the PyTorch ecosystem, supporting development across fields like computer vision and natural language processing. Additionally, PyTorch is compatible with major cloud platforms, simplifying development processes and enabling seamless scaling. You can easily choose your preferences and execute the installation command. The stable version signifies the most recently tested and endorsed iteration of PyTorch, which is typically adequate for a broad range of users. For those seeking the cutting-edge, a preview is offered, featuring the latest nightly builds of version 1.10, although these may not be fully tested or supported. It is crucial to verify that you meet all prerequisites, such as having numpy installed, based on your selected package manager. Anaconda is highly recommended as the package manager of choice, as it effectively installs all necessary dependencies, ensuring a smooth installation experience for users. This comprehensive approach not only enhances productivity but also ensures a robust foundation for development.
  • 6
    Hugging Face Reviews

    Hugging Face

    Hugging Face

    $9 per month
    Hugging Face is an AI community platform that provides state-of-the-art machine learning models, datasets, and APIs to help developers build intelligent applications. The platform’s extensive repository includes models for text generation, image recognition, and other advanced machine learning tasks. Hugging Face’s open-source ecosystem, with tools like Transformers and Tokenizers, empowers both individuals and enterprises to build, train, and deploy machine learning solutions at scale. It offers integration with major frameworks like TensorFlow and PyTorch for streamlined model development.
  • 7
    NVIDIA Broadcast Reviews
    The NVIDIA Broadcast application turns any space into a professional-quality studio. Elevate your live streams, voice conversations, and virtual meetings with the power of AI-enhanced visuals and audio. Experience the remarkable capabilities of the Broadcast app powered by NVIDIA® RTX GPUs. Eliminate disruptive sounds like keyboard clacking, microphone noise, distracting PC fans, and background echoes effortlessly. With just a click, its noise cancellation and echo reduction features harness AI to remove these unwelcome distractions. Stream live or join remote meetings without the hassle of searching for a quiet environment. You can also silence players in noisy settings, making their voices clearer and easier to comprehend. NVIDIA Broadcast simplifies this process significantly. You can also modify your background without the need for costly gear or intricate lighting arrangements. Enhance your webcam feed with advanced AI green screen effects that are ideal for both professional and personal use, no matter your location. The opportunities are limitless, allowing you to create the perfect setup for any occasion.
  • 8
    CUDA Reviews
    CUDA® is a powerful parallel computing platform and programming framework created by NVIDIA, designed for executing general computing tasks on graphics processing units (GPUs). By utilizing CUDA, developers can significantly enhance the performance of their computing applications by leveraging the immense capabilities of GPUs. In applications that are GPU-accelerated, the sequential components of the workload are handled by the CPU, which excels in single-threaded tasks, while the more compute-heavy segments are processed simultaneously across thousands of GPU cores. When working with CUDA, programmers can use familiar languages such as C, C++, Fortran, Python, and MATLAB, incorporating parallelism through a concise set of specialized keywords. NVIDIA’s CUDA Toolkit equips developers with all the essential tools needed to create GPU-accelerated applications. This comprehensive toolkit encompasses GPU-accelerated libraries, an efficient compiler, various development tools, and the CUDA runtime, making it easier to optimize and deploy high-performance computing solutions. Additionally, the versatility of the toolkit allows for a wide range of applications, from scientific computing to graphics rendering, showcasing its adaptability in diverse fields.
  • 9
    NVIDIA Merlin Reviews
    NVIDIA Merlin equips data scientists, ML engineers, and researchers with the tools necessary to create scalable, high-performance recommendation systems. This suite includes libraries, methodologies, and various tools that simplify the process of building recommenders by tackling prevalent issues related to preprocessing, feature engineering, training, inference, and production deployment. Optimized components within Merlin facilitate the retrieval, filtering, scoring, and organization of vast data sets, often reaching hundreds of terabytes, all accessed via user-friendly APIs. The implementation of Merlin enables enhanced predictions, improved click-through rates, and quicker production deployment, making it an essential resource for professionals. As a part of NVIDIA AI, Merlin exemplifies the company's dedication to empowering innovative practitioners in their work. Furthermore, this comprehensive solution is crafted to seamlessly integrate with existing recommender systems that leverage both data science and machine learning techniques, ensuring that users can build on their current workflows effectively.
  • 10
    NVIDIA virtual GPU Reviews
    NVIDIA's virtual GPU (vGPU) software delivers high-performance GPU capabilities essential for various tasks, including graphics-intensive virtual workstations and advanced data science applications, allowing IT teams to harness the advantages of virtualization alongside the robust performance provided by NVIDIA GPUs for contemporary workloads. This software is installed on a physical GPU within a cloud or enterprise data center server, effectively creating virtual GPUs that can be distributed across numerous virtual machines, permitting access from any device at any location. The performance achieved is remarkably similar to that of a bare metal setup, ensuring a seamless user experience. Additionally, it utilizes standard data center management tools, facilitating processes like live migration, and enables the provisioning of GPU resources through fractional or multi-GPU virtual machine instances. This flexibility is particularly beneficial for adapting to evolving business needs and supporting remote teams, thus enhancing overall productivity and operational efficiency.
  • 11
    NVIDIA NIM Reviews
    Investigate the most recent advancements in optimized AI models, link AI agents to data using NVIDIA NeMo, and deploy solutions seamlessly with NVIDIA NIM microservices. NVIDIA NIM comprises user-friendly inference microservices that enable the implementation of foundation models across various cloud platforms or data centers, thereby maintaining data security while promoting efficient AI integration. Furthermore, NVIDIA AI offers access to the Deep Learning Institute (DLI), where individuals can receive technical training to develop valuable skills, gain practical experience, and acquire expert knowledge in AI, data science, and accelerated computing. AI models produce responses based on sophisticated algorithms and machine learning techniques; however, these outputs may sometimes be inaccurate, biased, harmful, or inappropriate. Engaging with this model comes with the understanding that you accept the associated risks of any potential harm stemming from its responses or outputs. As a precaution, refrain from uploading any sensitive information or personal data unless you have explicit permission, and be aware that your usage will be tracked for security monitoring. Remember, the evolving landscape of AI requires users to stay informed and vigilant about the implications of deploying such technologies.
  • 12
    NVIDIA Jetson Reviews
    The Jetson platform by NVIDIA stands out as a premier embedded AI computing solution, employed by seasoned developers to craft innovative AI products across a multitude of sectors, while also serving as a valuable resource for students and hobbyists eager to engage in practical AI experimentation and creative endeavors. This versatile platform features compact, energy-efficient production modules and developer kits that include a robust AI software stack, enabling efficient high-performance acceleration. Such capabilities facilitate the deployment of generative AI on the edge, thereby enhancing applications like NVIDIA Metropolis and the Isaac platform. The Jetson family encompasses a variety of modules designed to cater to diverse performance and power efficiency requirements, including models like the Jetson Nano, Jetson TX2, Jetson Xavier NX, and the Jetson Orin series. Each module is meticulously crafted to address specific AI computing needs, accommodating a wide spectrum of projects ranging from beginner-level initiatives to complex robotics and industrial applications, ultimately fostering innovation and development in the field of AI. Through its comprehensive offerings, the Jetson platform empowers creators to push the boundaries of what is possible in AI technology.
  • 13
    NVIDIA Riva Studio Reviews
    Utilize a browser equipped with in-app prompts alongside a recording tool to gather audio samples. You can access a curated collection of phonetically balanced sentences designed to help build a 30-minute dataset aimed at training a TTS model that captures the nuances of your distinct voice. Tailor the model's sound by selecting the pitch range that aligns best with your vocal characteristics, as a suggested typical voice pitch range setting is already included, along with a preconfigured optimal recipe for personalizing the TTS model to reflect your voice. To further enhance functionality, create an API that allows seamless integration of your customized TTS model into various applications. You’ll also have the option to download a deployable package that includes a helm chart, facilitating deployment on any cloud platform or an on-premises Kubernetes cluster. Following that, you can effortlessly host your voice microservice using NVIDIA or implement it with a simple line of code, ensuring smooth operation. Additionally, the Riva TTS model can be set up, customized, and deployed through user-friendly no-code, end-to-end graphical workflows, eliminating the need for intricate infrastructure configuration, and making the process accessible for everyone. This approach not only streamlines the deployment process but also empowers users to create high-quality TTS solutions with minimal technical barriers.
  • 14
    NVIDIA AI Enterprise Reviews
    NVIDIA AI Enterprise serves as the software backbone of the NVIDIA AI platform, enhancing the data science workflow and facilitating the development and implementation of various AI applications, including generative AI, computer vision, and speech recognition. Featuring over 50 frameworks, a range of pretrained models, and an array of development tools, NVIDIA AI Enterprise aims to propel businesses to the forefront of AI innovation while making the technology accessible to all enterprises. As artificial intelligence and machine learning have become essential components of nearly every organization's competitive strategy, the challenge of managing fragmented infrastructure between cloud services and on-premises data centers has emerged as a significant hurdle. Effective AI implementation necessitates that these environments be treated as a unified platform, rather than isolated computing units, which can lead to inefficiencies and missed opportunities. Consequently, organizations must prioritize strategies that promote integration and collaboration across their technological infrastructures to fully harness AI's potential.
  • 15
    NVIDIA Clara Reviews
    Clara provides specialized tools and pre-trained AI models that are driving significant advancements across various sectors, such as healthcare technologies, medical imaging, pharmaceutical development, and genomic research. Delve into the comprehensive process of developing and implementing medical devices through the Holoscan platform. Create containerized AI applications using the Holoscan SDK in conjunction with MONAI, and enhance deployment efficiency in next-gen AI devices utilizing the NVIDIA IGX developer kits. Moreover, the NVIDIA Holoscan SDK is equipped with acceleration libraries tailored for healthcare, alongside pre-trained AI models and sample applications designed for computational medical devices. This combination of resources fosters innovation and efficiency, positioning developers to tackle complex challenges in the medical field.
  • 16
    NVIDIA Morpheus Reviews
    NVIDIA Morpheus is a cutting-edge, GPU-accelerated AI framework designed for developers to efficiently build applications that filter, process, and classify extensive streams of cybersecurity data. By leveraging artificial intelligence, Morpheus significantly cuts down both the time and expenses involved in detecting, capturing, and responding to potential threats, thereby enhancing security across data centers, cloud environments, and edge computing. Additionally, it empowers human analysts by utilizing generative AI to automate real-time analysis and responses, creating synthetic data that trains AI models to accurately identify risks while also simulating various scenarios. For developers interested in accessing the latest pre-release features and building from source, Morpheus is offered as open-source software on GitHub. Moreover, organizations can benefit from unlimited usage across all cloud platforms, dedicated support from NVIDIA AI experts, and long-term assistance for production deployments by opting for NVIDIA AI Enterprise. This combination of features helps ensure organizations are well-equipped to handle the evolving landscape of cybersecurity threats.
  • 17
    LaunchX Reviews
    Optimized AI is set to roll out its on-device capabilities, facilitating the deployment of AI models directly onto physical devices. By utilizing LaunchX automation, users can streamline the conversion process and easily assess performance metrics on designated devices. The platform can be tailored to align with specific hardware requirements, ensuring a seamless integration of AI models within a customized software ecosystem. Nota's AI innovations are designed to enhance intelligent transportation systems, facial recognition technology, and security surveillance mechanisms. Among their offerings are a driver monitoring system, robust driver authentication solutions, and smart access control systems. Nota is actively engaged in diverse sectors, such as construction, mobility, security, smart home technology, and healthcare. Furthermore, partnerships with leading global firms like Nvidia, Intel, and ARM have significantly boosted Nota's ability to penetrate the international market. The company is committed to pushing the boundaries of AI applications across various industries to create smarter environments.
  • 18
    NVIDIA DRIVE Reviews
    Software transforms a vehicle into a smart machine, and the NVIDIA DRIVE™ Software stack serves as an open platform that enables developers to effectively create and implement a wide range of advanced autonomous vehicle applications, such as perception, localization and mapping, planning and control, driver monitoring, and natural language processing. At the core of this software ecosystem lies DRIVE OS, recognized as the first operating system designed for safe accelerated computing. This system incorporates NvMedia for processing sensor inputs, NVIDIA CUDA® libraries to facilitate efficient parallel computing, and NVIDIA TensorRT™ for real-time artificial intelligence inference, alongside numerous tools and modules that provide access to hardware capabilities. The NVIDIA DriveWorks® SDK builds on DRIVE OS, offering essential middleware functions that are critical for the development of autonomous vehicles. These functions include a sensor abstraction layer (SAL) and various sensor plugins, a data recorder, vehicle I/O support, and a framework for deep neural networks (DNN), all of which are vital for enhancing the performance and reliability of autonomous systems. With these powerful resources, developers are better equipped to innovate and push the boundaries of what's possible in automated transportation.
  • Previous
  • You're on page 1
  • Next