Business Software for Keras

  • 1
    TensorFlow Reviews
    TensorFlow is a comprehensive open-source machine learning platform that covers the entire process from development to deployment. This platform boasts a rich and adaptable ecosystem featuring various tools, libraries, and community resources, empowering researchers to advance the field of machine learning while allowing developers to create and implement ML-powered applications with ease. With intuitive high-level APIs like Keras and support for eager execution, users can effortlessly build and refine ML models, facilitating quick iterations and simplifying debugging. The flexibility of TensorFlow allows for seamless training and deployment of models across various environments, whether in the cloud, on-premises, within browsers, or directly on devices, regardless of the programming language utilized. Its straightforward and versatile architecture supports the transformation of innovative ideas into practical code, enabling the development of cutting-edge models that can be published swiftly. Overall, TensorFlow provides a powerful framework that encourages experimentation and accelerates the machine learning process.
  • 2
    Dataiku Reviews
    Dataiku serves as a sophisticated platform for data science and machine learning, aimed at facilitating teams in the construction, deployment, and management of AI and analytics projects on a large scale. It enables a diverse range of users, including data scientists and business analysts, to work together in developing data pipelines, crafting machine learning models, and preparing data through various visual and coding interfaces. Supporting the complete AI lifecycle, Dataiku provides essential tools for data preparation, model training, deployment, and ongoing monitoring of projects. Additionally, the platform incorporates integrations that enhance its capabilities, such as generative AI, thereby allowing organizations to innovate and implement AI solutions across various sectors. This adaptability positions Dataiku as a valuable asset for teams looking to harness the power of AI effectively.
  • 3
    Lambda GPU Cloud Reviews
    Train advanced models in AI, machine learning, and deep learning effortlessly. With just a few clicks, you can scale your computing resources from a single machine to a complete fleet of virtual machines. Initiate or expand your deep learning endeavors using Lambda Cloud, which allows you to quickly get started, reduce computing expenses, and seamlessly scale up to hundreds of GPUs when needed. Each virtual machine is equipped with the latest version of Lambda Stack, featuring prominent deep learning frameworks and CUDA® drivers. In mere seconds, you can access a dedicated Jupyter Notebook development environment for every machine directly through the cloud dashboard. For immediate access, utilize the Web Terminal within the dashboard or connect via SSH using your provided SSH keys. By creating scalable compute infrastructure tailored specifically for deep learning researchers, Lambda is able to offer substantial cost savings. Experience the advantages of cloud computing's flexibility without incurring exorbitant on-demand fees, even as your workloads grow significantly. This means you can focus on your research and projects without being hindered by financial constraints.
  • 4
    Activeeon ProActive Reviews
    ProActive Parallel Suite, a member of the OW2 Open Source Community for acceleration and orchestration, seamlessly integrated with the management and operation of high-performance Clouds (Private, Public with bursting capabilities). ProActive Parallel Suite platforms offer high-performance workflows and application parallelization, enterprise Scheduling & Orchestration, and dynamic management of private Heterogeneous Grids & Clouds. Our users can now simultaneously manage their Enterprise Cloud and accelerate and orchestrate all of their enterprise applications with the ProActive platform.
  • 5
    OpenVINO Reviews
    The Intel® Distribution of OpenVINO™ toolkit serves as an open-source AI development resource that speeds up inference on various Intel hardware platforms. This toolkit is crafted to enhance AI workflows, enabling developers to implement refined deep learning models tailored for applications in computer vision, generative AI, and large language models (LLMs). Equipped with integrated model optimization tools, it guarantees elevated throughput and minimal latency while decreasing the model size without sacrificing accuracy. OpenVINO™ is an ideal choice for developers aiming to implement AI solutions in diverse settings, spanning from edge devices to cloud infrastructures, thereby assuring both scalability and peak performance across Intel architectures. Ultimately, its versatile design supports a wide range of AI applications, making it a valuable asset in modern AI development.
  • 6
    Zorro Reviews

    Zorro

    oP group Germany GmbH

    Free
    Free script-based software to automate financial research, algorithmic trading and quantitative investing using deep learning algorithms. Zorro supports automated trade with options, stocks, futures and CFDs. It also supports Forex and cryptocurrencies. It provides a great deal of flexibility and features that are not available in consumer trading software. You can quickly get started with tutorials and video courses.
  • 7
    Gradient Reviews

    Gradient

    Gradient

    $8 per month
    Discover a fresh library or dataset while working in a notebook environment. Streamline your preprocessing, training, or testing processes through an automated workflow. Transform your application into a functioning product by deploying it effectively. You have the flexibility to utilize notebooks, workflows, and deployments either together or on their own. Gradient is fully compatible with all major frameworks and libraries, ensuring seamless integration. Powered by Paperspace's exceptional GPU instances, Gradient allows you to accelerate your projects significantly. Enhance your development speed with integrated source control, connecting effortlessly to GitHub to oversee all your work and computing resources. Launch a GPU-enabled Jupyter Notebook right from your browser in mere seconds, using any library or framework of your choice. It's simple to invite collaborators or share a public link for your projects. This straightforward cloud workspace operates on free GPUs, allowing you to get started almost instantly with an easy-to-navigate notebook environment that's perfect for machine learning developers. Offering a robust and hassle-free setup with numerous features, it just works. Choose from pre-existing templates or integrate your own unique configurations, and take advantage of a free GPU to kickstart your projects!
  • 8
    BentoML Reviews
    Deploy your machine learning model in the cloud within minutes using a consolidated packaging format that supports both online and offline operations across various platforms. Experience a performance boost with throughput that is 100 times greater than traditional flask-based model servers, achieved through our innovative micro-batching technique. Provide exceptional prediction services that align seamlessly with DevOps practices and integrate effortlessly with widely-used infrastructure tools. The unified deployment format ensures high-performance model serving while incorporating best practices for DevOps. This service utilizes the BERT model, which has been trained with the TensorFlow framework to effectively gauge the sentiment of movie reviews. Our BentoML workflow eliminates the need for DevOps expertise, automating everything from prediction service registration to deployment and endpoint monitoring, all set up effortlessly for your team. This creates a robust environment for managing substantial ML workloads in production. Ensure that all models, deployments, and updates are easily accessible and maintain control over access through SSO, RBAC, client authentication, and detailed auditing logs, thereby enhancing both security and transparency within your operations. With these features, your machine learning deployment process becomes more efficient and manageable than ever before.
  • 9
    neptune.ai Reviews

    neptune.ai

    neptune.ai

    $49 per month
    Neptune.ai serves as a robust platform for machine learning operations (MLOps), aimed at simplifying the management of experiment tracking, organization, and sharing within the model-building process. It offers a thorough environment for data scientists and machine learning engineers to log data, visualize outcomes, and compare various model training sessions, datasets, hyperparameters, and performance metrics in real-time. Seamlessly integrating with widely-used machine learning libraries, Neptune.ai allows teams to effectively oversee both their research and production processes. Its features promote collaboration, version control, and reproducibility of experiments, ultimately boosting productivity and ensuring that machine learning initiatives are transparent and thoroughly documented throughout their entire lifecycle. This platform not only enhances team efficiency but also provides a structured approach to managing complex machine learning workflows.
  • 10
    Comet Reviews

    Comet

    Comet

    $179 per user per month
    Manage and optimize models throughout the entire ML lifecycle. This includes experiment tracking, monitoring production models, and more. The platform was designed to meet the demands of large enterprise teams that deploy ML at scale. It supports any deployment strategy, whether it is private cloud, hybrid, or on-premise servers. Add two lines of code into your notebook or script to start tracking your experiments. It works with any machine-learning library and for any task. To understand differences in model performance, you can easily compare code, hyperparameters and metrics. Monitor your models from training to production. You can get alerts when something is wrong and debug your model to fix it. You can increase productivity, collaboration, visibility, and visibility among data scientists, data science groups, and even business stakeholders.
  • 11
    Superwise Reviews
    Achieve in minutes what previously took years to develop with our straightforward, adaptable, scalable, and secure machine learning monitoring solution. You’ll find all the tools necessary to deploy, sustain, and enhance machine learning in a production environment. Superwise offers an open platform that seamlessly integrates with any machine learning infrastructure and connects with your preferred communication tools. If you wish to explore further, Superwise is designed with an API-first approach, ensuring that every feature is available through our APIs, all accessible from the cloud platform of your choice. With Superwise, you gain complete self-service control over your machine learning monitoring. You can configure metrics and policies via our APIs and SDK, or you can simply choose from a variety of monitoring templates to set sensitivity levels, conditions, and alert channels that suit your needs. Experience the benefits of Superwise for yourself, or reach out to us for more information. Effortlessly create alerts using Superwise’s policy templates and monitoring builder, selecting from numerous pre-configured monitors that address issues like data drift and fairness, or tailor policies to reflect your specialized knowledge and insights. The flexibility and ease of use provided by Superwise empower users to effectively manage their machine learning models.
  • 12
    Akira AI Reviews

    Akira AI

    Akira AI

    $15 per month
    Akira.ai offers organizations a suite of Agentic AI, which comprises tailored AI agents aimed at refining and automating intricate workflows across multiple sectors. These agents work alongside human teams to improve productivity, facilitate prompt decision-making, and handle monotonous tasks, including data analysis, HR operations, and incident management. The platform is designed to seamlessly integrate with current systems such as CRMs and ERPs, enabling a smooth shift to AI-driven processes without disruption. By implementing Akira’s AI agents, businesses can enhance their operational efficiency, accelerate decision-making, and foster innovation in industries such as finance, IT, and manufacturing. Ultimately, this collaboration between AI and human teams paves the way for significant advancements in productivity and operational excellence.
  • 13
    Guild AI Reviews
    Guild AI serves as an open-source toolkit for tracking experiments, crafted to introduce systematic oversight into machine learning processes, thereby allowing users to enhance model creation speed and quality. By automatically documenting every facet of training sessions as distinct experiments, it promotes thorough tracking and evaluation. Users can conduct comparisons and analyses of different runs, which aids in refining their understanding and progressively enhancing their models. The toolkit also streamlines hyperparameter tuning via advanced algorithms that are executed through simple commands, doing away with the necessity for intricate trial setups. Furthermore, it facilitates the automation of workflows, which not only speeds up development but also minimizes errors while yielding quantifiable outcomes. Guild AI is versatile, functioning on all major operating systems and integrating effortlessly with pre-existing software engineering tools. In addition to this, it offers support for a range of remote storage solutions, such as Amazon S3, Google Cloud Storage, Azure Blob Storage, and SSH servers, making it a highly adaptable choice for developers. This flexibility ensures that users can tailor their workflows to fit their specific needs, further enhancing the toolkit’s utility in diverse machine learning environments.
  • 14
    Google AI Edge Reviews
    Google AI Edge presents an extensive range of tools and frameworks aimed at simplifying the integration of artificial intelligence into mobile, web, and embedded applications. By facilitating on-device processing, it minimizes latency, supports offline capabilities, and keeps data secure and local. Its cross-platform compatibility ensures that the same AI model can operate smoothly across various embedded systems. Additionally, it boasts multi-framework support, accommodating models developed in JAX, Keras, PyTorch, and TensorFlow. Essential features include low-code APIs through MediaPipe for standard AI tasks, which enable rapid incorporation of generative AI, as well as functionalities for vision, text, and audio processing. Users can visualize their model's evolution through conversion and quantification processes, while also overlaying results to diagnose performance issues. The platform encourages exploration, debugging, and comparison of models in a visual format, allowing for easier identification of critical hotspots. Furthermore, it enables users to view both comparative and numerical performance metrics, enhancing the debugging process and improving overall model optimization. This powerful combination of features positions Google AI Edge as a pivotal resource for developers aiming to leverage AI in their applications.
  • 15
    Flower Reviews
    Flower is a federated learning framework that is open-source and aims to make the creation and implementation of machine learning models across distributed data sources more straightforward. By enabling the training of models on data stored on individual devices or servers without the need to transfer that data, it significantly boosts privacy and minimizes bandwidth consumption. The framework is compatible with an array of popular machine learning libraries such as PyTorch, TensorFlow, Hugging Face Transformers, scikit-learn, and XGBoost, and it works seamlessly with various cloud platforms including AWS, GCP, and Azure. Flower offers a high degree of flexibility with its customizable strategies and accommodates both horizontal and vertical federated learning configurations. Its architecture is designed for scalability, capable of managing experiments that involve tens of millions of clients effectively. Additionally, Flower incorporates features geared towards privacy preservation, such as differential privacy and secure aggregation, ensuring that sensitive data remains protected throughout the learning process. This comprehensive approach makes Flower a robust choice for organizations looking to leverage federated learning in their machine learning initiatives.
  • 16
    RazorThink Reviews
    RZT aiOS provides all the benefits of a unified AI platform, and more. It's not just a platform, it's an Operating System that connects, manages, and unifies all your AI initiatives. AI developers can now do what used to take months in days thanks to aiOS process management which dramatically increases their productivity. This Operating System provides an intuitive environment for AI development. It allows you to visually build models, explore data and create processing pipelines. You can also run experiments and view analytics. It's easy to do all of this without any advanced software engineering skills.
  • 17
    Intel Tiber AI Studio Reviews
    Intel® Tiber™ AI Studio serves as an all-encompassing machine learning operating system designed to streamline and unify the development of artificial intelligence. This robust platform accommodates a diverse array of AI workloads and features a hybrid multi-cloud infrastructure that enhances the speed of ML pipeline creation, model training, and deployment processes. By incorporating native Kubernetes orchestration and a meta-scheduler, Tiber™ AI Studio delivers unparalleled flexibility for managing both on-premises and cloud resources. Furthermore, its scalable MLOps framework empowers data scientists to seamlessly experiment, collaborate, and automate their machine learning workflows, all while promoting efficient and cost-effective resource utilization. This innovative approach not only boosts productivity but also fosters a collaborative environment for teams working on AI projects.
  • 18
    MLReef Reviews
    MLReef allows domain specialists and data scientists to collaborate securely through a blend of coding and no-coding methods. This results in a remarkable 75% boost in productivity, as teams can distribute workloads more effectively. Consequently, organizations are able to expedite the completion of numerous machine learning projects. By facilitating collaboration on a unified platform, MLReef eliminates all unnecessary back-and-forth communication. The system operates on your premises, ensuring complete reproducibility and continuity of work, allowing for easy rebuilding whenever needed. It also integrates with established git repositories, enabling the creation of AI modules that are not only explorative but also versioned and interoperable. The AI modules developed by your team can be transformed into user-friendly drag-and-drop components that are customizable and easily managed within your organization. Moreover, handling data often necessitates specialized expertise that a single data scientist might not possess, making MLReef an invaluable asset by empowering field experts to take on data processing tasks, which simplifies complexities and enhances overall workflow efficiency. This collaborative environment ensures that all team members can contribute to the process effectively, further amplifying the benefits of shared knowledge and skill sets.
  • 19
    Cameralyze Reviews

    Cameralyze

    Cameralyze

    $29 per month
    Enhance your product's capabilities with artificial intelligence. Our platform provides an extensive range of ready-to-use models along with an intuitive no-code interface for creating custom models. Effortlessly integrate AI into your applications for a distinct competitive advantage. Sentiment analysis, often referred to as opinion mining, involves the extraction of subjective insights from textual data, including customer reviews, social media interactions, and feedback, categorizing these insights as positive, negative, or neutral. The significance of this technology has surged in recent years, with a growing number of businesses leveraging it to comprehend customer sentiments and requirements, ultimately leading to data-driven decisions that can refine their offerings and marketing approaches. By employing sentiment analysis, organizations can gain valuable insights into customer feedback, enabling them to enhance their products, services, and promotional strategies effectively. This advancement not only aids in improving customer satisfaction but also fosters innovation within the company.
  • 20
    Horovod Reviews
    Originally created by Uber, Horovod aims to simplify and accelerate the process of distributed deep learning, significantly reducing model training durations from several days or weeks to mere hours or even minutes. By utilizing Horovod, users can effortlessly scale their existing training scripts to leverage the power of hundreds of GPUs with just a few lines of Python code. It offers flexibility for deployment, as it can be installed on local servers or seamlessly operated in various cloud environments such as AWS, Azure, and Databricks. In addition, Horovod is compatible with Apache Spark, allowing a cohesive integration of data processing and model training into one streamlined pipeline. Once set up, the infrastructure provided by Horovod supports model training across any framework, facilitating easy transitions between TensorFlow, PyTorch, MXNet, and potential future frameworks as the landscape of machine learning technologies continues to progress. This adaptability ensures that users can keep pace with the rapid advancements in the field without being locked into a single technology.
  • 21
    GPUEater Reviews

    GPUEater

    GPUEater

    $0.0992 per hour
    Persistence container technology facilitates efficient operations with a lightweight approach, allowing users to pay for usage by the second instead of waiting for hours or months. The payment process, which will occur via credit card, is set for the following month. This technology offers high performance at a competitive price compared to alternative solutions. Furthermore, it is set to be deployed in the fastest supercomputer globally at Oak Ridge National Laboratory. Various machine learning applications, including deep learning, computational fluid dynamics, video encoding, 3D graphics workstations, 3D rendering, visual effects, computational finance, seismic analysis, molecular modeling, and genomics, will benefit from this technology, along with other GPU workloads in server environments. The versatility of these applications demonstrates the broad impact of persistence container technology across different scientific and computational fields.
  • 22
    Comet LLM Reviews
    CometLLM serves as a comprehensive platform for recording and visualizing your LLM prompts and chains. By utilizing CometLLM, you can discover effective prompting techniques, enhance your troubleshooting processes, and maintain consistent workflows. It allows you to log not only your prompts and responses but also includes details such as prompt templates, variables, timestamps, duration, and any necessary metadata. The user interface provides the capability to visualize both your prompts and their corresponding responses seamlessly. You can log chain executions with the desired level of detail, and similarly, visualize these executions through the interface. Moreover, when you work with OpenAI chat models, the tool automatically tracks your prompts for you. It also enables you to monitor and analyze user feedback effectively. The UI offers the feature to compare your prompts and chain executions through a diff view. Comet LLM Projects are specifically designed to aid in conducting insightful analyses of your logged prompt engineering processes. Each column in the project corresponds to a specific metadata attribute that has been recorded, meaning the default headers displayed can differ based on the particular project you are working on. Thus, CometLLM not only simplifies prompt management but also enhances your overall analytical capabilities.
  • 23
    Gemma 3 Reviews
    Gemma 3, launched by Google, represents a cutting-edge AI model constructed upon the Gemini 2.0 framework, aimed at delivering superior efficiency and adaptability. This innovative model can operate seamlessly on a single GPU or TPU, which opens up opportunities for a diverse group of developers and researchers. Focusing on enhancing natural language comprehension, generation, and other AI-related functions, Gemma 3 is designed to elevate the capabilities of AI systems. With its scalable and robust features, Gemma 3 aspires to propel the evolution of AI applications in numerous sectors and scenarios, potentially transforming the landscape of technology as we know it.
  • 24
    Dragonfly 3D World Reviews
    Dragonfly 3D World, developed by Object Research Systems (ORS), serves as a sophisticated software platform tailored for the visualization, analysis, and collaborative study of multidimensional images across various scientific and industrial domains. This platform boasts an array of robust features that facilitate the visualization, processing, and interpretation of 2D, 3D, and even 4D imaging data, which can be obtained from modalities like CT, MRI, and electron microscopy, among others. Users can engage in interactive exploration of intricate structures through real-time volume rendering, surface rendering, and orthogonal slicing capabilities. The integration of artificial intelligence within Dragonfly empowers users to harness deep learning techniques for tasks such as image segmentation, classification, and object detection, significantly enhancing analytical precision. Additionally, the software includes sophisticated quantitative analysis tools that allow for region-of-interest investigations, measurements, and statistical assessments. The user-friendly graphical interface of Dragonfly ensures that researchers can construct reproducible workflows and efficiently conduct batch processing, promoting consistency and productivity in their work. Ultimately, Dragonfly 3D World stands out as a vital resource for those seeking to push the boundaries of imaging analysis in their respective fields.
  • 25
    Gemma 3n Reviews

    Gemma 3n

    Google DeepMind

    Introducing Gemma 3n, our cutting-edge open multimodal model designed specifically for optimal on-device performance and efficiency. With a focus on responsive and low-footprint local inference, Gemma 3n paves the way for a new generation of intelligent applications that can be utilized on the move. It has the capability to analyze and respond to a blend of images and text, with plans to incorporate video and audio functionalities in the near future. Developers can create smart, interactive features that prioritize user privacy and function seamlessly without an internet connection. The model boasts a mobile-first architecture, significantly minimizing memory usage. Co-developed by Google's mobile hardware teams alongside industry experts, it maintains a 4B active memory footprint while also offering the flexibility to create submodels for optimizing quality and latency. Notably, Gemma 3n represents our inaugural open model built on this revolutionary shared architecture, enabling developers to start experimenting with this advanced technology today in its early preview. As technology evolves, we anticipate even more innovative applications to emerge from this robust framework.
  • Previous
  • You're on page 1
  • 2
  • Next