Business Software for AWS Glue

  • 1
    AWS Marketplace Reviews
    AWS Marketplace serves as a carefully organized digital platform that allows users to explore, buy, implement, and oversee third-party software, data products, AI agents, and services seamlessly within the AWS environment. This marketplace offers a vast array of options spanning various categories, including security, machine learning, business applications, and DevOps tools. By featuring adaptable pricing structures like pay-as-you-go, annual subscriptions, and free trials, AWS Marketplace makes it easier for customers to manage procurement and billing by consolidating expenses into a single AWS invoice. Additionally, it facilitates quick deployment of pre-configured software that can be easily launched on AWS infrastructure. This efficient model not only empowers businesses to spur innovation and reduce time-to-market but also enhances their ability to control software utilization and costs effectively. Ultimately, AWS Marketplace stands as an essential tool for organizations looking to optimize their software management and procurement processes.
  • 2
    Orchestra Reviews
    Orchestra serves as a Comprehensive Control Platform for Data and AI Operations, aimed at empowering data teams to effortlessly create, deploy, and oversee workflows. This platform provides a declarative approach that merges coding with a graphical interface, enabling users to develop workflows at a tenfold speed while cutting maintenance efforts by half. Through its real-time metadata aggregation capabilities, Orchestra ensures complete data observability, facilitating proactive alerts and swift recovery from any pipeline issues. It smoothly integrates with a variety of tools such as dbt Core, dbt Cloud, Coalesce, Airbyte, Fivetran, Snowflake, BigQuery, Databricks, and others, ensuring it fits well within existing data infrastructures. With a modular design that accommodates AWS, Azure, and GCP, Orchestra proves to be a flexible option for businesses and growing organizations looking to optimize their data processes and foster confidence in their AI ventures. Additionally, its user-friendly interface and robust connectivity options make it an essential asset for organizations striving to harness the full potential of their data ecosystems.
  • 3
    Feroot Reviews

    Feroot

    Feroot Security

    Feroot believes businesses and their customers deserve to be able engage in a secure and safe online experience. Feroot's mission is to secure web applications on the client side so that users are able to engage in online environments safely, whether it's using an ecommerce website for purchasing, or accessing internet-based health services, or transferring money between financial accounts. Our products help companies uncover supply chain risk and protect their client side attack surface. Feroot Inspector allows businesses to scan, monitor and enforce security controls in order to prevent data loss incidents caused by JavaScript, third-parties and configuration weaknesses. Our data protection capabilities reduce the time and labor intensive code reviews and threats analysis, and remove ambiguity related to client-side security detection and response.
  • 4
    FairCom DB Reviews

    FairCom DB

    FairCom Corporation

    FairCom DB is ideal to handle large-scale, mission critical core-business applications that demand performance, reliability, and scalability that cannot easily be achieved with other databases. FairCom DB provides predictable high-velocity transactions with big data analytics and massively parallel big-data processing. It provides developers with NoSQL APIs that allow them to process binary data at machine speed. ANSI SQL allows for simple queries and analysis over the same binary data. Verizon is one of the companies that has taken advantage of FairCom DB's flexibility. Verizon recently selected FairCom DB to be its in-memory database for the Verizon Intelligent Network Control Platform Transaction Server Migrating. FairCom DB, an advanced database engine, gives you a Continuum of Control that allows you to achieve unparalleled performance at a low total cost of ownership (TCO). FairCom DB doesn't conform to you. FairCom DB conforms. FairCom DB doesn't force you to conform to the database's limitations.
  • 5
    Tokern Reviews
    Tokern offers an open-source suite designed for data governance, specifically tailored for databases and data lakes. This user-friendly toolkit facilitates the collection, organization, and analysis of metadata from data lakes, allowing users to execute quick tasks via a command-line application or run it as a service for ongoing metadata collection. Users can delve into aspects like data lineage, access controls, and personally identifiable information (PII) datasets, utilizing reporting dashboards or Jupyter notebooks for programmatic analysis. As a comprehensive solution, Tokern aims to enhance your data's return on investment, ensure compliance with regulations such as HIPAA, CCPA, and GDPR, and safeguard sensitive information against insider threats seamlessly. It provides centralized management for metadata related to users, datasets, and jobs, which supports various other data governance functionalities. With the capability to track Column Level Data Lineage for platforms like Snowflake, AWS Redshift, and BigQuery, users can construct lineage from query histories or ETL scripts. Additionally, lineage exploration can be achieved through interactive graphs or programmatically via APIs or SDKs, offering a versatile approach to understanding data flow. Overall, Tokern empowers organizations to maintain robust data governance while navigating complex regulatory landscapes.
  • 6
    Privacera Reviews
    Multi-cloud data security with a single pane of glass Industry's first SaaS access governance solution. Cloud is fragmented and data is scattered across different systems. Sensitive data is difficult to access and control due to limited visibility. Complex data onboarding hinders data scientist productivity. Data governance across services can be manual and fragmented. It can be time-consuming to securely move data to the cloud. Maximize visibility and assess the risk of sensitive data distributed across multiple cloud service providers. One system that enables you to manage multiple cloud services' data policies in a single place. Support RTBF, GDPR and other compliance requests across multiple cloud service providers. Securely move data to the cloud and enable Apache Ranger compliance policies. It is easier and quicker to transform sensitive data across multiple cloud databases and analytical platforms using one integrated system.
  • 7
    Wavo Reviews
    We are excited to introduce a groundbreaking big data platform designed for the music industry, which consolidates all relevant information into a single, reliable source to inform strategic decisions. Within the music business sector, numerous data sources exist, but they are often isolated and disjointed. Our innovative platform effectively identifies and integrates these sources, establishing a robust foundation of high-quality data applicable to everyday operations in the music industry. To operate effectively and securely while uncovering unique insights, record labels and agencies need an advanced data management and governance framework that ensures data is consistently accessible, pertinent, and practical. As data sources are integrated into Wavo’s Big Data Platform, machine learning techniques are utilized to categorize the data according to customized templates, facilitating easy access and deep dives into crucial information. This capability empowers every member of a music organization to harness and utilize data that is prepared and organized for immediate application and value creation. Ultimately, our platform serves as a catalyst for smarter decision-making and enhanced operational efficiency across the music business landscape.
  • 8
    Alex Solutions Reviews
    The Alex Platform serves as the definitive source of data and business accuracy for your organization. It is a crucial element that underpins our clients' success in utilizing data effectively. From the very first day of its deployment, Alex is engineered to simplify operations and deliver value right from the start. The Alex Augmented Data Catalog harnesses top-tier machine learning technology, swiftly creating a cohesive data environment across the entire enterprise. Regardless of the intricacies of your technical framework, Alex Data Lineage enables you to effortlessly track and comprehend your data movements in a secure and automated manner. In an increasingly interconnected world, global teams require seamless coordination. The Alex Intelligent Business Glossary boasts an attractive user interface and comprehensive features, making it ideal for fostering international collaboration. By consolidating all definitions, policies, metrics, rules, and workflows, you can effectively tackle the challenges posed by multi-cloud environments and global enterprises. This approach empowers robust data governance initiatives, ensuring that all aspects of data management are consistently aligned across the organization. Ultimately, Alex not only streamlines operations but also enhances the overall strategic decision-making process.
  • 9
    Amundsen Reviews
    Uncover and rely on data for your analyses and models while enhancing productivity by dismantling silos. Gain instant insights into data usage by others and locate data within your organization effortlessly through a straightforward text search. Utilizing a PageRank-inspired algorithm, the system suggests results based on names, descriptions, tags, and user activity associated with tables or dashboards. Foster confidence in your data with automated and curated metadata that includes detailed information on tables and columns, highlights frequent users, indicates the last update, provides statistics, and offers data previews when authorized. Streamline the process by linking the ETL jobs and the code that generated the data, making it easier to manage table and column descriptions while minimizing confusion about which tables to utilize and their contents. Additionally, observe which data sets are commonly accessed, owned, or marked by your colleagues, and discover the most frequent queries for any table by reviewing the dashboards that leverage that specific data. This comprehensive approach not only enhances collaboration but also drives informed decision-making across teams.
  • 10
    Varada Reviews
    Varada offers a cutting-edge big data indexing solution that adeptly balances performance and cost while eliminating the need for data operations. This distinct technology acts as an intelligent acceleration layer within your data lake, which remains the central source of truth and operates within the customer's cloud infrastructure (VPC). By empowering data teams to operationalize their entire data lake, Varada facilitates data democratization while ensuring fast, interactive performance, all without requiring data relocation, modeling, or manual optimization. The key advantage lies in Varada's capability to automatically and dynamically index pertinent data, maintaining the structure and granularity of the original source. Additionally, Varada ensures that any query can keep pace with the constantly changing performance and concurrency demands of users and analytics APIs, while also maintaining predictable cost management. The platform intelligently determines which queries to accelerate and which datasets to index, while also flexibly adjusting the cluster to match demand, thereby optimizing both performance and expenses. This holistic approach to data management not only enhances operational efficiency but also allows organizations to remain agile in an ever-evolving data landscape.
  • 11
    Amazon SageMaker Studio Reviews
    Amazon SageMaker Studio serves as a comprehensive integrated development environment (IDE) that offers a unified web-based visual platform, equipping users with specialized tools essential for every phase of machine learning (ML) development, ranging from data preparation to the creation, training, and deployment of ML models, significantly enhancing the productivity of data science teams by as much as 10 times. Users can effortlessly upload datasets, initiate new notebooks, and engage in model training and tuning while easily navigating between different development stages to refine their experiments. Collaboration within organizations is facilitated, and the deployment of models into production can be accomplished seamlessly without leaving the interface of SageMaker Studio. This platform allows for the complete execution of the ML lifecycle, from handling unprocessed data to overseeing the deployment and monitoring of ML models, all accessible through a single, extensive set of tools presented in a web-based visual format. Users can swiftly transition between various steps in the ML process to optimize their models, while also having the ability to replay training experiments, adjust model features, and compare outcomes, ensuring a fluid workflow within SageMaker Studio for enhanced efficiency. In essence, SageMaker Studio not only streamlines the ML development process but also fosters an environment conducive to collaborative innovation and rigorous experimentation. Amazon SageMaker Unified Studio provides a seamless and integrated environment for data teams to manage AI and machine learning projects from start to finish. It combines the power of AWS’s analytics tools—like Amazon Athena, Redshift, and Glue—with machine learning workflows.
  • 12
    Amazon SageMaker Feature Store Reviews
    Amazon SageMaker Feature Store serves as a comprehensive, fully managed repository specifically designed for the storage, sharing, and management of features utilized in machine learning (ML) models. Features represent the data inputs that are essential during both the training phase and inference process of ML models. For instance, in a music recommendation application, relevant features might encompass song ratings, listening times, and audience demographics. The importance of feature quality cannot be overstated, as it plays a vital role in achieving a model with high accuracy, and various teams often rely on these features repeatedly. Moreover, synchronizing features between offline batch training and real-time inference poses significant challenges. SageMaker Feature Store effectively addresses this issue by offering a secure and cohesive environment that supports feature utilization throughout the entire ML lifecycle. This platform enables users to store, share, and manage features for both training and inference, thereby facilitating their reuse across different ML applications. Additionally, it allows for the ingestion of features from a multitude of data sources, including both streaming and batch inputs such as application logs, service logs, clickstream data, and sensor readings, ensuring versatility and efficiency in feature management. Ultimately, SageMaker Feature Store enhances collaboration and improves model performance across various machine learning projects.
  • 13
    Acryl Data Reviews
    Bid farewell to abandoned data catalogs. Acryl Cloud accelerates time-to-value by implementing Shift Left methodologies for data producers and providing an easy-to-navigate interface for data consumers. It enables the continuous monitoring of data quality incidents in real-time, automating anomaly detection to avert disruptions and facilitating swift resolutions when issues arise. With support for both push-based and pull-based metadata ingestion, Acryl Cloud simplifies maintenance, ensuring that information remains reliable, current, and authoritative. Data should be actionable and operational. Move past mere visibility and leverage automated Metadata Tests to consistently reveal data insights and identify new opportunities for enhancement. Additionally, enhance clarity and speed up resolutions with defined asset ownership, automatic detection, streamlined notifications, and temporal lineage for tracing the origins of issues while fostering a culture of proactive data management.
  • 14
    Pendula Reviews
    In today's fast-paced market, capturing customer attention is increasingly challenging, forcing marketing and customer experience (CX) leaders to drive growth while managing limited time and resources. Pendula harnesses the vast capabilities of generative AI to equip teams with the tools necessary to foster adaptive and impactful two-way customer interactions, ultimately inspiring, engaging, and retaining customers on a larger scale. Positioned as a central figure in the dialogue between businesses and their clientele worldwide, Pendula offers intuitive drag-and-drop features that enable teams to maximize their productivity. By facilitating intelligent action based on real-time data, Pendula activates your entire data ecosystem, making it a cornerstone of next-generation customer engagement and retention strategies. Through its innovative workflow studio, the only constraints are those of your imagination, allowing users to select data sources that highlight crucial moments for their customers, thus enhancing the overall experience. This approach not only streamlines communication but also cultivates deeper relationships between brands and their audiences.
  • 15
    Unity Catalog Reviews
    The Unity Catalog from Databricks stands out as the sole comprehensive and open governance framework tailored for data and artificial intelligence, integrated within the Databricks Data Intelligence Platform. This innovative solution enables organizations to effortlessly manage structured and unstructured data in various formats, in addition to machine learning models, notebooks, dashboards, and files on any cloud or platform. Data scientists, analysts, and engineers can securely navigate, access, and collaborate on reliable data and AI resources across diverse environments, harnessing AI capabilities to enhance efficiency and realize the full potential of the lakehouse architecture. By adopting this cohesive and open governance strategy, organizations can foster interoperability and expedite their data and AI projects, all while making regulatory compliance easier to achieve. Furthermore, users can quickly identify and categorize both structured and unstructured data, including machine learning models, notebooks, dashboards, and files, across all cloud platforms, ensuring a streamlined governance experience. This comprehensive approach not only simplifies data management but also encourages a collaborative culture among teams.
  • 16
    Amazon DataZone Reviews
    Amazon DataZone serves as a comprehensive data management solution that empowers users to catalog, explore, share, and regulate data from various sources, including AWS, on-premises systems, and third-party platforms. It provides administrators and data stewards with the ability to manage and oversee data access with precision, guaranteeing that users possess the correct level of permissions and contextual understanding. This service streamlines data access for a diverse range of professionals, such as engineers, data scientists, product managers, analysts, and business users, thereby promoting insights driven by data through enhanced collaboration. Among its notable features are a business data catalog that enables searching and requesting access to published datasets, tools for project collaboration to oversee and manage data assets, a user-friendly web portal offering tailored views for data analysis, and regulated data sharing workflows that ensure proper access. Furthermore, Amazon DataZone leverages machine learning to automate the processes of data discovery and cataloging, making it an invaluable resource for organizations striving to maximize their data utility. As a result, it significantly enhances the efficiency of data governance and utilization across various business functions.
  • 17
    Amazon SageMaker Unified Studio Reviews
    Amazon SageMaker Unified Studio provides a seamless and integrated environment for data teams to manage AI and machine learning projects from start to finish. It combines the power of AWS’s analytics tools—like Amazon Athena, Redshift, and Glue—with machine learning workflows, enabling users to build, train, and deploy models more effectively. The platform supports collaborative project work, secure data sharing, and access to Amazon’s AI services for generative AI app development. With built-in tools for model training, inference, and evaluation, SageMaker Unified Studio accelerates the AI development lifecycle.
  • 18
    SDF Reviews
    SDF serves as a robust platform for developers focused on data, improving SQL understanding across various organizations and empowering data teams to maximize their data's capabilities. It features a transformative layer that simplifies the processes of writing and managing queries, along with an analytical database engine that enables local execution and an accelerator that enhances transformation tasks. Additionally, SDF includes proactive measures for quality and governance, such as comprehensive reports, contracts, and impact analysis tools, to maintain data integrity and ensure compliance with regulations. By encapsulating business logic in code, SDF aids in the classification and management of different data types, thereby improving the clarity and sustainability of data models. Furthermore, it integrates effortlessly into pre-existing data workflows, accommodating multiple SQL dialects and cloud environments, and is built to scale alongside the evolving demands of data teams. The platform's open-core architecture, constructed on Apache DataFusion, not only promotes customization and extensibility but also encourages a collaborative environment for data development, making it an invaluable resource for organizations aiming to enhance their data strategies. Consequently, SDF plays a pivotal role in fostering innovation and efficiency within data management processes.