Best Event Stream Processing Software for Confluent

Find and compare the best Event Stream Processing software for Confluent in 2025

Use the comparison tool below to compare the top Event Stream Processing software for Confluent on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Ably Reviews

    Ably

    Ably

    $49.99/month
    Ably is the definitive realtime experience platform. We power more WebSocket connections than any other pub/sub platform, serving over a billion devices monthly. Businesses trust us with their critical applications like chat, notifications and broadcast - reliably, securely and at serious scale.
  • 2
    kPow Reviews

    kPow

    Factor House

    $2,650 per cluster per year
    We know how simple Apache Kafka®, can be when you have the right tools. kPow was created to simplify the Kafka development experience and save businesses time and money. kPow makes it easy to find the root cause of production problems in a matter of clicks and not hours. With kPow's Data Inspect and kREPL functions, you can search tens of thousands messages per second. Are you new to Kafka kPow's Kafka UI is unique and allows developers to quickly understand the core Kafka concepts. You can upskill new members of your team and increase your Kafka knowledge. kPow offers a range of Kafka management features and monitoring capabilities in a single Docker Container. You can manage multiple clusters and schema registries. Connect installs with one instance.
  • 3
    Lenses Reviews

    Lenses

    Lenses.io

    $49 per month
    Empower individuals to explore and analyze streaming data effectively. By sharing, documenting, and organizing your data, you can boost productivity by as much as 95%. Once you have your data, you can create applications tailored for real-world use cases. Implement a security model focused on data to address the vulnerabilities associated with open source technologies, ensuring data privacy is prioritized. Additionally, offer secure and low-code data pipeline functionalities that enhance usability. Illuminate all hidden aspects and provide unmatched visibility into data and applications. Integrate your data mesh and technological assets, ensuring you can confidently utilize open-source solutions in production environments. Lenses has been recognized as the premier product for real-time stream analytics, based on independent third-party evaluations. With insights gathered from our community and countless hours of engineering, we have developed features that allow you to concentrate on what generates value from your real-time data. Moreover, you can deploy and operate SQL-based real-time applications seamlessly over any Kafka Connect or Kubernetes infrastructure, including AWS EKS, making it easier than ever to harness the power of your data. By doing so, you will not only streamline operations but also unlock new opportunities for innovation.
  • 4
    Arroyo Reviews
    Scale from zero to millions of events per second effortlessly. Arroyo is delivered as a single, compact binary, allowing for local development on MacOS or Linux, and seamless deployment to production environments using Docker or Kubernetes. As a pioneering stream processing engine, Arroyo has been specifically designed to simplify real-time processing, making it more accessible than traditional batch processing. Its architecture empowers anyone with SQL knowledge to create dependable, efficient, and accurate streaming pipelines. Data scientists and engineers can independently develop comprehensive real-time applications, models, and dashboards without needing a specialized team of streaming professionals. By employing SQL, users can transform, filter, aggregate, and join data streams, all while achieving sub-second response times. Your streaming pipelines should remain stable and not trigger alerts simply because Kubernetes has chosen to reschedule your pods. Built for modern, elastic cloud infrastructures, Arroyo supports everything from straightforward container runtimes like Fargate to complex, distributed setups on Kubernetes, ensuring versatility and robust performance across various environments. This innovative approach to stream processing significantly enhances the ability to manage data flows in real-time applications.
  • Previous
  • You're on page 1
  • Next