Best ETL Software for Amazon CloudWatch

Find and compare the best ETL software for Amazon CloudWatch in 2025

Use the comparison tool below to compare the top ETL software for Amazon CloudWatch on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Logstash Reviews
    Centralize, transform, and store your data seamlessly. Logstash serves as a free and open-source data processing pipeline on the server side, capable of ingesting data from numerous sources, transforming it, and then directing it to your preferred storage solution. It efficiently handles the ingestion, transformation, and delivery of data, accommodating various formats and levels of complexity. Utilize grok to extract structure from unstructured data, interpret geographic coordinates from IP addresses, and manage sensitive information by anonymizing or excluding specific fields to simplify processing. Data is frequently dispersed across multiple systems and formats, creating silos that can hinder analysis. Logstash accommodates a wide range of inputs, enabling the simultaneous collection of events from diverse and common sources. Effortlessly collect data from logs, metrics, web applications, data repositories, and a variety of AWS services, all in a continuous streaming manner. With its robust capabilities, Logstash empowers organizations to unify their data landscape effectively. For further information, you can download it here: https://sourceforge.net/projects/logstash.mirror/
  • 2
    TROCCO Reviews

    TROCCO

    primeNumber Inc

    TROCCO is an all-in-one modern data platform designed to help users seamlessly integrate, transform, orchestrate, and manage data through a unified interface. It boasts an extensive array of connectors that encompass advertising platforms such as Google Ads and Facebook Ads, cloud services like AWS Cost Explorer and Google Analytics 4, as well as various databases including MySQL and PostgreSQL, and data warehouses such as Amazon Redshift and Google BigQuery. One of its standout features is Managed ETL, which simplifies the data import process by allowing bulk ingestion of data sources and offers centralized management for ETL configurations, thereby removing the necessity for individual setup. Furthermore, TROCCO includes a data catalog that automatically collects metadata from data analysis infrastructure, creating a detailed catalog that enhances data accessibility and usage. Users have the ability to design workflows that enable them to organize a sequence of tasks, establishing an efficient order and combination to optimize data processing. This capability allows for increased productivity and ensures that users can better capitalize on their data resources.
  • Previous
  • You're on page 1
  • Next