Best Embedding Models for Gemini

Find and compare the best Embedding Models for Gemini in 2025

Use the comparison tool below to compare the top Embedding Models for Gemini on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Vertex AI Reviews

    Vertex AI

    Google

    Free ($300 in free credits)
    713 Ratings
    See Software
    Learn More
    Vertex AI's Embedding Models are engineered to transform complex, high-dimensional data—such as text or images—into streamlined, fixed-length vectors that maintain key characteristics. These models play a pivotal role in various applications, including semantic search, recommendation engines, and natural language processing, where comprehending the interconnections between data points is essential. By leveraging embeddings, companies can boost the precision and efficiency of their machine learning models by effectively capturing intricate data patterns. New clients are offered $300 in complimentary credits, allowing them to delve into the capabilities of embedding models within their AI projects. Through the application of these models, organizations can significantly elevate the performance of their AI solutions, enhancing outcomes in domains like search functionality and user personalization.
  • 2
    Gemini Embedding Reviews

    Gemini Embedding

    Google

    $0.15 per 1M input tokens
    The Gemini Embedding's inaugural text model, known as gemini-embedding-001, is now officially available through the Gemini API and Vertex AI, having maintained its leading position on the Massive Text Embedding Benchmark Multilingual leaderboard since its experimental introduction in March, attributed to its outstanding capabilities in retrieval, classification, and various embedding tasks, surpassing both traditional Google models and those from external companies. This highly adaptable model accommodates more than 100 languages and has a maximum input capacity of 2,048 tokens, utilizing the innovative Matryoshka Representation Learning (MRL) method, which allows developers to select output dimensions of 3072, 1536, or 768 to ensure the best balance of quality, performance, and storage efficiency. Developers are able to utilize it via the familiar embed_content endpoint in the Gemini API, and although the older experimental versions will be phased out by 2025, transitioning to the new model does not necessitate re-embedding of previously stored content. This seamless migration process is designed to enhance user experience without disrupting existing workflows.
  • Previous
  • You're on page 1
  • Next