Best Embedded Database Systems for SQL

Find and compare the best Embedded Database systems for SQL in 2025

Use the comparison tool below to compare the top Embedded Database systems for SQL on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    MySQL Reviews
    MySQL stands out as the most widely used open source database globally. Thanks to its established track record in performance, dependability, and user-friendliness, it has emerged as the preferred database for web applications, powering notable platforms such as Facebook, Twitter, and YouTube, alongside the top five websites. Furthermore, MySQL is also highly favored as an embedded database solution, being distributed by numerous independent software vendors and original equipment manufacturers. Its versatility and robust features contribute to its widespread adoption across various industries.
  • 2
    Apache Phoenix Reviews

    Apache Phoenix

    Apache Software Foundation

    Free
    Apache Phoenix provides low-latency OLTP and operational analytics on Hadoop by merging the advantages of traditional SQL with the flexibility of NoSQL. It utilizes HBase as its underlying storage, offering full ACID transaction support alongside late-bound, schema-on-read capabilities. Fully compatible with other Hadoop ecosystem tools such as Spark, Hive, Pig, Flume, and MapReduce, it establishes itself as a reliable data platform for OLTP and operational analytics through well-defined, industry-standard APIs. When a SQL query is executed, Apache Phoenix converts it into a series of HBase scans, managing these scans to deliver standard JDBC result sets seamlessly. The framework's direct interaction with the HBase API, along with the implementation of coprocessors and custom filters, enables performance metrics that can reach milliseconds for simple queries and seconds for larger datasets containing tens of millions of rows. This efficiency positions Apache Phoenix as a formidable choice for businesses looking to enhance their data processing capabilities in a Big Data environment.
  • 3
    Tarantool Reviews
    Businesses require a solution to maintain seamless operations of their systems, enhance data processing speed, and ensure storage reliability. In-memory technologies have emerged as effective tools for addressing these challenges. For over a decade, Tarantool has been assisting organizations globally in creating intelligent caches, data marts, and comprehensive client profiles while optimizing server utilization. This approach not only reduces the expenses associated with storing credentials compared to isolated solutions but also enhances both the service and security of client applications. Furthermore, it lowers the costs of data management by minimizing the number of separate systems that hold customer identities. By analyzing user behavior and data, companies can boost sales through improved speed and accuracy in recommending products or services. Additionally, enhancing the performance of mobile and web channels can significantly reduce user attrition. In the context of large organizations, IT systems often operate within a closed network loop, which poses risks as data circulates without adequate protection. Consequently, it becomes imperative for corporations to adopt robust strategies that not only safeguard their data but also ensure optimal system functionality.
  • 4
    Mimer SQL Reviews
    The Mimer SQL codebase is recognized as one of the most advanced in the industry. It boasts a modular architecture that ensures exceptional maintainability, effortless scalability, and a focus on portability. Our expertise in maximizing the capabilities of computers and operating systems is reflected in Mimer SQL. Featuring a cutting-edge SQL compiler that employs the latest optimization techniques, alongside a top-tier storage engine, it establishes a foundation for unprecedented speed and efficiency, limited only by hardware constraints. The security features of Mimer SQL are continuously enhanced, leaving no aspect overlooked. It effectively safeguards data in use, in motion, and at rest, utilizing proven, reliable, and well-documented algorithms. As a perfect partner for contemporary in-vehicle computing solutions, Mimer SQL delivers performance and reliability that meet the rigorous demands of secure, adaptable, and dependable data management in the realm of modern autonomous and connected vehicles. With its innovative design, Mimer SQL ensures that users can confidently rely on it for all their data needs.
  • 5
    ITTIA DB Reviews
    The ITTIA DB suite brings together advanced features for time series, real-time data streaming, and analytics tailored for embedded systems, ultimately streamlining development processes while minimizing expenses. With ITTIA DB IoT, users can access a compact embedded database designed for real-time operations on resource-limited 32-bit microcontrollers (MCUs), while ITTIA DB SQL serves as a robust time-series embedded database that operates efficiently on both single and multicore microprocessors (MPUs). These ITTIA DB offerings empower devices to effectively monitor, process, and retain real-time data. Additionally, the products are specifically engineered to meet the needs of Electronic Control Units (ECUs) within the automotive sector. To ensure data security, ITTIA DB incorporates comprehensive protection mechanisms against unauthorized access, leveraging encryption, authentication, and the DB SEAL feature. Furthermore, ITTIA SDL adheres to the standards set forth by IEC/ISO 62443, reinforcing its commitment to safety. By integrating ITTIA DB, developers can seamlessly collect, process, and enhance incoming real-time data streams through a specialized SDK designed for edge devices, allowing for efficient searching, filtering, joining, and aggregating of data right at the edge. This comprehensive approach not only optimizes performance but also supports the growing demand for real-time data handling in today's technology landscape.
  • 6
    DuckDB Reviews
    Handling and storing tabular data, such as that found in CSV or Parquet formats, is essential for data management. Transferring large result sets to clients is a common requirement, especially in extensive client/server frameworks designed for centralized enterprise data warehousing. Additionally, writing to a single database from various simultaneous processes poses its own set of challenges. DuckDB serves as a relational database management system (RDBMS), which is a specialized system for overseeing data organized into relations. In this context, a relation refers to a table, characterized by a named collection of rows. Each row within a table maintains a consistent structure of named columns, with each column designated to hold a specific data type. Furthermore, tables are organized within schemas, and a complete database comprises a collection of these schemas, providing structured access to the stored data. This organization not only enhances data integrity but also facilitates efficient querying and reporting across diverse datasets.
  • Previous
  • You're on page 1
  • Next