Best Distributed Databases for Hadoop

Find and compare the best Distributed Databases for Hadoop in 2025

Use the comparison tool below to compare the top Distributed Databases for Hadoop on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    MongoDB Reviews
    Top Pick
    MongoDB is a versatile, document-oriented, distributed database designed specifically for contemporary application developers and the cloud landscape. It offers unparalleled productivity, enabling teams to ship and iterate products 3 to 5 times faster thanks to its adaptable document data model and a single query interface that caters to diverse needs. Regardless of whether you're serving your very first customer or managing 20 million users globally, you'll be able to meet your performance service level agreements in any setting. The platform simplifies high availability, safeguards data integrity, and adheres to the security and compliance requirements for your critical workloads. Additionally, it features a comprehensive suite of cloud database services that support a broad array of use cases, including transactional processing, analytics, search functionality, and data visualizations. Furthermore, you can easily deploy secure mobile applications with built-in edge-to-cloud synchronization and automatic resolution of conflicts. MongoDB's flexibility allows you to operate it in various environments, from personal laptops to extensive data centers, making it a highly adaptable solution for modern data management challenges.
  • 2
    Apache Cassandra Reviews

    Apache Cassandra

    Apache Software Foundation

    1 Rating
    When seeking a database that ensures both scalability and high availability without sacrificing performance, Apache Cassandra stands out as an ideal option. Its linear scalability paired with proven fault tolerance on standard hardware or cloud services positions it as an excellent choice for handling mission-critical data effectively. Additionally, Cassandra's superior capability to replicate data across several datacenters not only enhances user experience by reducing latency but also offers reassurance in the event of regional failures. This combination of features makes it a robust solution for organizations that prioritize data resilience and efficiency.
  • 3
    SingleStore Reviews

    SingleStore

    SingleStore

    $0.69 per hour
    1 Rating
    SingleStore, previously known as MemSQL, is a highly scalable and distributed SQL database that can operate in any environment. It is designed to provide exceptional performance for both transactional and analytical tasks while utilizing well-known relational models. This database supports continuous data ingestion, enabling operational analytics critical for frontline business activities. With the capacity to handle millions of events each second, SingleStore ensures ACID transactions and allows for the simultaneous analysis of vast amounts of data across various formats, including relational SQL, JSON, geospatial, and full-text search. It excels in data ingestion performance at scale and incorporates built-in batch loading alongside real-time data pipelines. Leveraging ANSI SQL, SingleStore offers rapid query responses for both current and historical data, facilitating ad hoc analysis through business intelligence tools. Additionally, it empowers users to execute machine learning algorithms for immediate scoring and conduct geoanalytic queries in real-time, thereby enhancing decision-making processes. Furthermore, its versatility makes it a strong choice for organizations looking to derive insights from diverse data types efficiently.
  • 4
    Apache Trafodion Reviews

    Apache Trafodion

    Apache Software Foundation

    Free
    Apache Trafodion serves as a webscale SQL-on-Hadoop solution that facilitates transactional or operational processes within the Apache Hadoop ecosystem. By leveraging the inherent scalability, elasticity, and flexibility of Hadoop, Trafodion enhances its capabilities to ensure transactional integrity, which opens the door for a new wave of big data applications to operate seamlessly on Hadoop. The platform supports the full ANSI SQL language, allowing for JDBC/ODBC connectivity suitable for both Linux and Windows clients. It provides distributed ACID transaction protection that spans multiple statements, tables, and rows, all while delivering performance enhancements specifically designed for OLTP workloads through both compile-time and run-time optimizations. Trafodion is also equipped with a parallel-aware query optimizer that efficiently handles large datasets, enabling developers to utilize their existing SQL knowledge and boost productivity. Furthermore, its distributed ACID transactions maintain data consistency across various rows and tables, making it interoperable with a wide range of existing tools and applications. This solution is neutral to both Hadoop and Linux distributions, providing a straightforward integration path into any existing Hadoop infrastructure. Thus, Apache Trafodion not only enhances the power of Hadoop but also simplifies the development process for users.
  • 5
    Greenplum Reviews

    Greenplum

    Greenplum Database

    Greenplum Database® stands out as a sophisticated, comprehensive, and open-source data warehouse solution. It excels in providing swift and robust analytics on data volumes that reach petabyte scales. Designed specifically for big data analytics, Greenplum Database is driven by a highly advanced cost-based query optimizer that ensures exceptional performance for analytical queries on extensive data sets. This project operates under the Apache 2 license, and we extend our gratitude to all current contributors while inviting new ones to join our efforts. In the Greenplum Database community, every contribution is valued, regardless of its size, and we actively encourage diverse forms of involvement. This platform serves as an open-source, massively parallel data environment tailored for analytics, machine learning, and artificial intelligence applications. Users can swiftly develop and implement models aimed at tackling complex challenges in fields such as cybersecurity, predictive maintenance, risk management, and fraud detection, among others. Dive into the experience of a fully integrated, feature-rich open-source analytics platform that empowers innovation.
  • 6
    Couchbase Reviews
    Couchbase distinguishes itself from other NoSQL databases by delivering an enterprise-grade, multicloud to edge solution that is equipped with the powerful features essential for mission-critical applications on a platform that is both highly scalable and reliable. This distributed cloud-native database operates seamlessly in contemporary dynamic settings, accommodating any cloud environment, whether it be customer-managed or a fully managed service. Leveraging open standards, Couchbase merges the advantages of NoSQL with the familiar structure of SQL, thereby facilitating a smoother transition from traditional mainframe and relational databases. Couchbase Server serves as a versatile, distributed database that integrates the benefits of relational database capabilities, including SQL and ACID transactions, with the adaptability of JSON, all built on a foundation that is remarkably fast and scalable. Its applications span various industries, catering to needs such as user profiles, dynamic product catalogs, generative AI applications, vector search, high-speed caching, and much more, making it an invaluable asset for organizations seeking efficiency and innovation.
  • 7
    Google Cloud Bigtable Reviews
    Google Cloud Bigtable provides a fully managed, scalable NoSQL data service that can handle large operational and analytical workloads. Cloud Bigtable is fast and performant. It's the storage engine that grows with your data, from your first gigabyte up to a petabyte-scale for low latency applications and high-throughput data analysis. Seamless scaling and replicating: You can start with one cluster node and scale up to hundreds of nodes to support peak demand. Replication adds high availability and workload isolation to live-serving apps. Integrated and simple: Fully managed service that easily integrates with big data tools such as Dataflow, Hadoop, and Dataproc. Development teams will find it easy to get started with the support for the open-source HBase API standard.
  • 8
    Apache Kudu Reviews

    Apache Kudu

    The Apache Software Foundation

    A Kudu cluster comprises tables that resemble those found in traditional relational (SQL) databases. These tables can range from a straightforward binary key and value structure to intricate designs featuring hundreds of strongly-typed attributes. Similar to SQL tables, each Kudu table is defined by a primary key, which consists of one or more columns; this could be a single unique user identifier or a composite key such as a (host, metric, timestamp) combination tailored for time-series data from machines. The primary key allows for quick reading, updating, or deletion of rows. The straightforward data model of Kudu facilitates the migration of legacy applications as well as the development of new ones, eliminating concerns about encoding data into binary formats or navigating through cumbersome JSON databases. Additionally, tables in Kudu are self-describing, enabling the use of standard analysis tools like SQL engines or Spark. With user-friendly APIs, Kudu ensures that developers can easily integrate and manipulate their data. This approach not only streamlines data management but also enhances overall efficiency in data processing tasks.
  • Previous
  • You're on page 1
  • Next