Best Deep Learning Software in Europe - Page 2

Find and compare the best Deep Learning software in Europe in 2025

Use the comparison tool below to compare the top Deep Learning software in Europe on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Segmind Reviews
    Segmind simplifies access to extensive computing resources, making it ideal for executing demanding tasks like deep learning training and various intricate processing jobs. It offers environments that require no setup within minutes, allowing for easy collaboration among team members. Additionally, Segmind's MLOps platform supports comprehensive management of deep learning projects, featuring built-in data storage and tools for tracking experiments. Recognizing that machine learning engineers often lack expertise in cloud infrastructure, Segmind takes on the complexities of cloud management, enabling teams to concentrate on their strengths and enhance model development efficiency. As training machine learning and deep learning models can be time-consuming and costly, Segmind allows for effortless scaling of computational power while potentially cutting costs by up to 70% through managed spot instances. Furthermore, today's ML managers often struggle to maintain an overview of ongoing ML development activities and associated expenses, highlighting the need for robust management solutions in the field. By addressing these challenges, Segmind empowers teams to achieve their goals more effectively.
  • 2
    Comet Reviews

    Comet

    Comet

    $179 per user per month
    Manage and optimize models throughout the entire ML lifecycle. This includes experiment tracking, monitoring production models, and more. The platform was designed to meet the demands of large enterprise teams that deploy ML at scale. It supports any deployment strategy, whether it is private cloud, hybrid, or on-premise servers. Add two lines of code into your notebook or script to start tracking your experiments. It works with any machine-learning library and for any task. To understand differences in model performance, you can easily compare code, hyperparameters and metrics. Monitor your models from training to production. You can get alerts when something is wrong and debug your model to fix it. You can increase productivity, collaboration, visibility, and visibility among data scientists, data science groups, and even business stakeholders.
  • 3
    DeepSpeed Reviews
    DeepSpeed is an open-source library focused on optimizing deep learning processes for PyTorch. Its primary goal is to enhance efficiency by minimizing computational power and memory requirements while facilitating the training of large-scale distributed models with improved parallel processing capabilities on available hardware. By leveraging advanced techniques, DeepSpeed achieves low latency and high throughput during model training. This tool can handle deep learning models with parameter counts exceeding one hundred billion on contemporary GPU clusters, and it is capable of training models with up to 13 billion parameters on a single graphics processing unit. Developed by Microsoft, DeepSpeed is specifically tailored to support distributed training for extensive models, and it is constructed upon the PyTorch framework, which excels in data parallelism. Additionally, the library continuously evolves to incorporate cutting-edge advancements in deep learning, ensuring it remains at the forefront of AI technology.
  • 4
    RapidMiner Reviews
    RapidMiner is redefining enterprise AI so anyone can positively shape the future. RapidMiner empowers data-loving people from all levels to quickly create and implement AI solutions that drive immediate business impact. Our platform unites data prep, machine-learning, and model operations. This provides a user experience that is both rich in data science and simplified for all others. Customers are guaranteed success with our Center of Excellence methodology, RapidMiner Academy and no matter what level of experience or resources they have.
  • 5
    RazorThink Reviews
    RZT aiOS provides all the benefits of a unified AI platform, and more. It's not just a platform, it's an Operating System that connects, manages, and unifies all your AI initiatives. AI developers can now do what used to take months in days thanks to aiOS process management which dramatically increases their productivity. This Operating System provides an intuitive environment for AI development. It allows you to visually build models, explore data and create processing pipelines. You can also run experiments and view analytics. It's easy to do all of this without any advanced software engineering skills.
  • 6
    Auger.AI Reviews

    Auger.AI

    Auger.AI

    $200 per month
    Auger.AI presents a comprehensive solution designed to guarantee the precision of machine learning models. Our Machine Learning Review and Monitoring (MLRAM) tool is pivotal in maintaining the accuracy of your models consistently. Additionally, it calculates the return on investment for your predictive analytics! MLRAM is compatible with any machine learning technology stack, which enhances its versatility. If your machine learning system lifecycle lacks regular accuracy assessments, you might be incurring losses due to faulty predictions. Moreover, the frequent need for model retraining can be costly and may not address issues stemming from concept drift. MLRAM delivers significant benefits for both data scientists and business users, featuring tools like accuracy visualization graphs, performance alerts, anomaly detection, and automated optimized retraining. Integrating your predictive model with MLRAM is as simple as adding a single line of code. We also provide a complimentary one-month trial of MLRAM for eligible users. With Auger.AI, you can confidently use the most precise AutoML platform available today, ensuring your organization maximizes its predictive capabilities.
  • 7
    Interplay Reviews
    Interplay Platform is a patented low-code platform with 475 pre-built Enterprises, AI, IoT drag-and-drop components. Interplay helps large organizations innovate faster. It's used as middleware and as a rapid app building platform by big companies like Circle K, Ulta Beauty, and many others. As middleware, it operates Pay-by-Plate (frictionless payments at the gas pump) in Europe, Weapons Detection (to predict robberies), AI-based Chat, online personalization tools, low price guarantee tools, computer vision applications such as damage estimation, and much more.
  • 8
    Amazon Rekognition Reviews
    Amazon Rekognition simplifies the integration of image and video analysis into applications by utilizing reliable, highly scalable deep learning technology that doesn’t necessitate any machine learning knowledge from users. This powerful tool allows for the identification of various elements such as objects, individuals, text, scenes, and activities within images and videos, alongside the capability to flag inappropriate content. Moreover, Amazon Rekognition excels in delivering precise facial analysis and search functions, which can be employed for diverse applications including user authentication, crowd monitoring, and enhancing public safety. Additionally, with the feature known as Amazon Rekognition Custom Labels, businesses can pinpoint specific objects and scenes in images tailored to their operational requirements. For instance, one could create a model designed to recognize particular machine components on a production line or to monitor the health of plants. The beauty of Amazon Rekognition Custom Labels lies in its ability to handle the complexities of model development, ensuring that users need not possess any background in machine learning to effectively utilize this technology. This makes it an accessible tool for a wide range of industries looking to harness the power of image analysis without the steep learning curve typically associated with machine learning.
  • 9
    Google Deep Learning Containers Reviews
    Accelerate the development of your deep learning project on Google Cloud: Utilize Deep Learning Containers to swiftly create prototypes within a reliable and uniform environment for your AI applications, encompassing development, testing, and deployment phases. These Docker images are pre-optimized for performance, thoroughly tested for compatibility, and designed for immediate deployment using popular frameworks. By employing Deep Learning Containers, you ensure a cohesive environment throughout the various services offered by Google Cloud, facilitating effortless scaling in the cloud or transitioning from on-premises setups. You also enjoy the versatility of deploying your applications on platforms such as Google Kubernetes Engine (GKE), AI Platform, Cloud Run, Compute Engine, Kubernetes, and Docker Swarm, giving you multiple options to best suit your project's needs. This flexibility not only enhances efficiency but also enables you to adapt quickly to changing project requirements.
  • 10
    Peltarion Reviews
    The Peltarion Platform is an accessible low-code environment for deep learning that empowers users to swiftly create AI-driven solutions that can scale commercially. It facilitates the entire process of building, adjusting, refining, and deploying deep learning models seamlessly. This comprehensive platform enables you to manage everything from data uploads to model creation and deployment in one place. Renowned organizations such as NASA, Tesla, Dell, and Harvard have leveraged the Peltarion Platform and its earlier version to address complex challenges. Users can either develop their own AI models or take advantage of our pre-trained options, utilizing a simple drag-and-drop interface, including access to the latest advancements. You have complete control over the entire development cycle, from construction and training to fine-tuning and deployment of AI solutions, all seamlessly integrated. By operationalizing AI through this platform, businesses can unlock significant value. For those with no background in AI, our Faster AI course is designed to provide foundational knowledge, and upon completion of seven concise modules, participants will gain the ability to create and customize their own AI models on the Peltarion platform, fostering a new generation of AI practitioners. This initiative not only enhances individual skill sets but also contributes to the broader adoption of AI technology in various industries.
  • 11
    Mobius Labs Reviews
    We make it easy for you to add superhuman computer vision into your applications, devices, and processes to give yourself an unassailable competitive edge.
  • 12
    DeepCube Reviews
    DeepCube is dedicated to advancing deep learning technologies, enhancing the practical application of AI systems in various environments. Among its many patented innovations, the company has developed techniques that significantly accelerate and improve the accuracy of training deep learning models while also enhancing inference performance. Their unique framework is compatible with any existing hardware, whether in data centers or edge devices, achieving over tenfold improvements in speed and memory efficiency. Furthermore, DeepCube offers the sole solution for the effective deployment of deep learning models on intelligent edge devices, overcoming a significant barrier in the field. Traditionally, after completing the training phase, deep learning models demand substantial processing power and memory, which has historically confined their deployment primarily to cloud environments. This innovation by DeepCube promises to revolutionize how deep learning models can be utilized, making them more accessible and efficient across diverse platforms.
  • 13
    NVIDIA GPU-Optimized AMI Reviews
    The NVIDIA GPU-Optimized AMI serves as a virtual machine image designed to enhance your GPU-accelerated workloads in Machine Learning, Deep Learning, Data Science, and High-Performance Computing (HPC). By utilizing this AMI, you can quickly launch a GPU-accelerated EC2 virtual machine instance, complete with a pre-installed Ubuntu operating system, GPU driver, Docker, and the NVIDIA container toolkit, all within a matter of minutes. This AMI simplifies access to NVIDIA's NGC Catalog, which acts as a central hub for GPU-optimized software, enabling users to easily pull and run performance-tuned, thoroughly tested, and NVIDIA-certified Docker containers. The NGC catalog offers complimentary access to a variety of containerized applications for AI, Data Science, and HPC, along with pre-trained models, AI SDKs, and additional resources, allowing data scientists, developers, and researchers to concentrate on creating and deploying innovative solutions. Additionally, this GPU-optimized AMI is available at no charge, with an option for users to purchase enterprise support through NVIDIA AI Enterprise. For further details on obtaining support for this AMI, please refer to the section labeled 'Support Information' below. Moreover, leveraging this AMI can significantly streamline the development process for projects requiring intensive computational resources.
  • 14
    NetApp AIPod Reviews
    NetApp AIPod presents a holistic AI infrastructure solution aimed at simplifying the deployment and oversight of artificial intelligence workloads. By incorporating NVIDIA-validated turnkey solutions like the NVIDIA DGX BasePOD™ alongside NetApp's cloud-integrated all-flash storage, AIPod brings together analytics, training, and inference into one unified and scalable system. This integration allows organizations to efficiently execute AI workflows, encompassing everything from model training to fine-tuning and inference, while also prioritizing data management and security. With a preconfigured infrastructure tailored for AI operations, NetApp AIPod minimizes complexity, speeds up the path to insights, and ensures smooth integration in hybrid cloud settings. Furthermore, its design empowers businesses to leverage AI capabilities more effectively, ultimately enhancing their competitive edge in the market.
  • 15
    Google Cloud Deep Learning VM Image Reviews
    Quickly set up a virtual machine on Google Cloud for your deep learning project using the Deep Learning VM Image, which simplifies the process of launching a VM with essential AI frameworks on Google Compute Engine. This solution allows you to initiate Compute Engine instances that come equipped with popular libraries such as TensorFlow, PyTorch, and scikit-learn, eliminating concerns over software compatibility. Additionally, you have the flexibility to incorporate Cloud GPU and Cloud TPU support effortlessly. The Deep Learning VM Image is designed to support both the latest and most widely used machine learning frameworks, ensuring you have access to cutting-edge tools like TensorFlow and PyTorch. To enhance the speed of your model training and deployment, these images are optimized with the latest NVIDIA® CUDA-X AI libraries and drivers, as well as the Intel® Math Kernel Library. By using this service, you can hit the ground running with all necessary frameworks, libraries, and drivers pre-installed and validated for compatibility. Furthermore, the Deep Learning VM Image provides a smooth notebook experience through its integrated support for JupyterLab, facilitating an efficient workflow for your data science tasks. This combination of features makes it an ideal solution for both beginners and experienced practitioners in the field of machine learning.
  • 16
    Horovod Reviews
    Originally created by Uber, Horovod aims to simplify and accelerate the process of distributed deep learning, significantly reducing model training durations from several days or weeks to mere hours or even minutes. By utilizing Horovod, users can effortlessly scale their existing training scripts to leverage the power of hundreds of GPUs with just a few lines of Python code. It offers flexibility for deployment, as it can be installed on local servers or seamlessly operated in various cloud environments such as AWS, Azure, and Databricks. In addition, Horovod is compatible with Apache Spark, allowing a cohesive integration of data processing and model training into one streamlined pipeline. Once set up, the infrastructure provided by Horovod supports model training across any framework, facilitating easy transitions between TensorFlow, PyTorch, MXNet, and potential future frameworks as the landscape of machine learning technologies continues to progress. This adaptability ensures that users can keep pace with the rapid advancements in the field without being locked into a single technology.
  • 17
    Dragonfly 3D World Reviews
    Dragonfly 3D World, developed by Object Research Systems (ORS), serves as a sophisticated software platform tailored for the visualization, analysis, and collaborative study of multidimensional images across various scientific and industrial domains. This platform boasts an array of robust features that facilitate the visualization, processing, and interpretation of 2D, 3D, and even 4D imaging data, which can be obtained from modalities like CT, MRI, and electron microscopy, among others. Users can engage in interactive exploration of intricate structures through real-time volume rendering, surface rendering, and orthogonal slicing capabilities. The integration of artificial intelligence within Dragonfly empowers users to harness deep learning techniques for tasks such as image segmentation, classification, and object detection, significantly enhancing analytical precision. Additionally, the software includes sophisticated quantitative analysis tools that allow for region-of-interest investigations, measurements, and statistical assessments. The user-friendly graphical interface of Dragonfly ensures that researchers can construct reproducible workflows and efficiently conduct batch processing, promoting consistency and productivity in their work. Ultimately, Dragonfly 3D World stands out as a vital resource for those seeking to push the boundaries of imaging analysis in their respective fields.
  • 18
    FARO Sphere XG Reviews

    FARO Sphere XG

    FARO Technologies, Inc.

    FARO Sphere XG, a cloud-based digital platform for digital reality, provides users with a centralized collaborative experience across all of the company's 3D modeling and reality capture applications. Sphere XG, when paired with Stream, enables faster 3D data collection, processing, and project management anywhere in the world. Sphere XG is a systematized tool that allows users to organize 3D scans, 360-degree photos and 3D models. It also allows them to manage data from different teams around the globe. Sphere XG allows you to view and share 3D point clouds, 360-degree photo documentation, and floorplans all in one place. You can also track the progress of your project over time. Ideal for 4D progress management, where the ability of comparing elements over time is crucial, project managers and VDC manager can better democratize the data and eliminate the necessity to use two platforms.
  • 19
    Winnow Vision Reviews
    Winnow Vision is the most advanced food waste technology available. Winnow Vision uses AI to maximize operational efficiency and data accuracy. This makes it easy to reduce food waste. Join hundreds of kitchens around the world to reduce their costs by as much as 8% per year. Commercial kitchens are finding it harder to increase profitability due to rising food costs. We have found that reducing food waste, by connecting the kitchen and technology, is the fastest way for companies to increase their margins. After just 90 days, Winnow customers have seen a remarkable 28% drop in food costs. Winnow's two food-waste tools - one with cutting-edge AI and the other beloved by more than 1,000 kitchens worldwide - can be tailored to different kitchen needs.
  • 20
    Planisware Reviews
    Planisware Enterprise helps you to capture your strategy and align your portfolios, projects and teams in order to have an impact on your bottom line. Planisware Orchestra allows you to make project decisions across your entire portfolio. It also helps you reach the next maturity level. Planisware Enterprise integrates budgets, forecasts and schedules with resources and actuals. Planisware is trusted by global organizations such as Ford, Philips and Pfizer as well as dynamic mid-sized innovators like Zebra, Beam Suntory and MSA Safety to manage their project pipeline. Planisware helps you to define your strategy and evaluate the results using roadmaps, budgets, investment buckets, and other tools. Through simulations and investment scenarios, you can define, prioritize, manage, and monitor your portfolio of projects. Capacity planning, resource scheduling, time tracking, and visibility are some of the ways you can gain visibility into your resources and manage them. You can manage your projects by controlling costs, scheduling, and deliverable management.
  • 21
    Sia Reviews
    Sia™ is transforming higher education by optimizing student lifecycle management, from admission to retention. This AI tool efficiently handles transcript processing, facilitating credit transfers, and increasing student retention rates. It analyzes students' academic backgrounds and preferences, providing tailored course and career suggestions, thus improving engagement and academic planning. As a virtual assistant on university portals, Sia™ makes information easily accessible, lightening staff workload and elevating the student experience. This innovative system redefines administrative tasks, offering effective, individualized assistance for student achievement.
  • 22
    Caffe Reviews
    Caffe is a deep learning framework designed with a focus on expressiveness, efficiency, and modularity, developed by Berkeley AI Research (BAIR) alongside numerous community contributors. The project was initiated by Yangqing Jia during his doctoral studies at UC Berkeley and is available under the BSD 2-Clause license. For those interested, there is an engaging web image classification demo available for viewing! The framework’s expressive architecture promotes innovation and application development. Users can define models and optimizations through configuration files without the need for hard-coded elements. By simply toggling a flag, users can seamlessly switch between CPU and GPU, allowing for training on powerful GPU machines followed by deployment on standard clusters or mobile devices. The extensible nature of Caffe's codebase supports ongoing development and enhancement. In its inaugural year, Caffe was forked by more than 1,000 developers, who contributed numerous significant changes back to the project. Thanks to these community contributions, the framework remains at the forefront of state-of-the-art code and models. Caffe's speed makes it an ideal choice for both research experiments and industrial applications, with the capability to process upwards of 60 million images daily using a single NVIDIA K40 GPU, demonstrating its robustness and efficacy in handling large-scale tasks. This performance ensures that users can rely on Caffe for both experimentation and deployment in various scenarios.
  • 23
    Deep Learning Training Tool Reviews
    The Intel® Deep Learning SDK offers a comprehensive suite of tools designed for data scientists and software developers to create, train, and implement deep learning solutions effectively. This SDK includes both training and deployment tools that can function independently or in unison, providing a holistic approach to deep learning workflows. Users can seamlessly prepare their training data, design intricate models, and conduct training through automated experiments accompanied by sophisticated visualizations. Additionally, it streamlines the setup and operation of well-known deep learning frameworks that are tailored for Intel® hardware. The intuitive web user interface features a user-friendly wizard that assists in crafting deep learning models, complete with tooltips that guide users through every step of the process. Moreover, this SDK not only enhances productivity but also fosters innovation in the development of AI applications.
  • 24
    Brighter AI Reviews

    Brighter AI

    Brighter AI Technologies

    As facial recognition technology advances, the collection of public video footage poses significant privacy threats. Brighter AI's Precision Blur stands out as the leading solution for accurate face redaction globally. Their innovative Deep Natural Anonymization leverages generative AI to generate synthetic face overlays that ensure individuals remain unrecognizable, all while maintaining the quality necessary for machine learning applications. The Selective Redaction interface empowers users to choose which personal information in videos to anonymize selectively. In specific scenarios, like those encountered in media and law enforcement, it may not be necessary to blur every face. Following automated detection processes, users have the option to individually select or deselect objects. Furthermore, the Analytics Endpoint delivers essential metadata linked to the original elements, including bounding box coordinates, facial landmarks, and attributes of individuals. With JSON outputs, users can access pertinent information while ensuring that images or videos remain compliant and anonymized, preserving privacy in an increasingly digital world. This combination of features not only enhances privacy but also supports various professional applications effectively.
  • 25
    DataRobot Reviews
    AI Cloud represents an innovative strategy designed to meet the current demands, challenges, and potential of artificial intelligence. This comprehensive system acts as a single source of truth, expediting the process of bringing AI solutions into production for organizations of all sizes. Users benefit from a collaborative environment tailored for ongoing enhancements throughout the entire AI lifecycle. The AI Catalog simplifies the process of discovering, sharing, tagging, and reusing data, which accelerates deployment and fosters teamwork. This catalog ensures that users can easily access relevant data to resolve business issues while maintaining high standards of security, compliance, and consistency. If your database is subject to a network policy restricting access to specific IP addresses, please reach out to Support for assistance in obtaining a list of IPs that should be added to your network policy for whitelisting, ensuring that your operations run smoothly. Additionally, leveraging AI Cloud can significantly improve your organization’s ability to innovate and adapt in a rapidly evolving technological landscape.